
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

IEEE/ACM ASONAM 2020, December 7-10, 2020
978-1-7281-1056-1/20/$31.00 © 2020 IEEE

Identifying Social Networks of Programmers using
Text Mining for Code Similarity Detection

Konstantinos F. Xylogiannopoulos
Dept. of Computer Science

University of Calgary

Calgary, Canada
 https://orcid.org/0000-0003-2376-898X

Panagiotis Karampelas
Dept. of Informatics & Computers

Hellenic Air Force Academy

Dekelia, Greece
 https://orcid.org/0000-0003-1684-7612

Abstract—The availability of code in many online
repositories and collaborating platforms has posed new
challenges in source code attribution not only for plagiarism
detection but also in other settings such as in the use of insecure
copied code in commercial application, etc. The sophistication
of different type of attacks in the code sequence used especially
by the students requires more effective code similarity detection
algorithms. In this paper, a novel source code detection method
is proposed that can identify programmers’ social network
based on advanced pattern detection text mining techniques.
The proposed methodology has significant advantages against
existing methods since ARPaD algorithm can detect all common
patterns between all possible code sequences in one run.
Therefore, the computational time is massively reduced to
𝑶(𝒎𝒏 𝐥𝐨𝐠𝒏) . In order to assess the performance of the
methodology, a new dataset was created by assigning to 46
students a code project with specific instructions. The
assessment results have been visualized, producing the social
network graphs of possible collaboration teams.

Keywords—code similarity detection, social network analysis,

code plagiarism detection, text mining, LERP-RSA, ARPaD

I. INTRODUCTION
The social web has fostered a number of novel interactions

among people of every discipline either related to computer
science or not. Various types of electronic social networks,
online collaborating platforms, photo and video sharing
websites and review platforms are some of the types of social
platforms that emerged in the social web. Through the years,
these platforms appear to have been transformed in more
focused platforms that satisfy particular needs of their
participants. In this socially connected world, programmers
have developed their own online social places in which they
exchange information, knowledge, advice, even source code.
In this context, a great number of specialized social platforms
have arisen in the service of programmers such as Questions
and Answers websites, Code Repositories, Programmers’
Blogs and several other platforms that facilitates the
communication among them.

Popular collaboration platforms such as StackOverflow
[1] reports more than 100 million visits per month having
answers for more than 20 million questions related to coding.
The parent company StackExchange [2] reports an average
rate of approximately 420 million visits per month in all the
173 different Q&A communities hosted, a great deal of them
related to programming. Other less specialized communities,
such as Quora [3], Reddit [4] and Google Groups [5] host
numerous coding communities formed by programmers,
dedicated to solve programming problems, sharing
programming knowledge and teaching younger members of
the communities. In addition, code hosting platforms such as
GitHub [6], BitBucket [7] and SourceForge [8] host numerous

programs for any existing programming environment and
language. GitHub alone reports more than 100 million
repositories up to 2019.

As it can be understood by the abovementioned statistics,
there is a plethora of code fragments all over the Internet
accessible to all. In this sense, writing a program, responding
to a programming exercise or solving a coding issue has
become easier than ever before. However, in some cases this
broad availability of code in the wild may raise various issues
depending on the context of use. For example, when the code
found in any of the abovementioned platforms has been used
to respond to a programming exercise by a student, then there
is a plagiarism case, since the purpose of the exercise is the
professor to decide whether the student is able to deliver a
meaningful algorithm and programming code that solves the
assigned problem and not to grade code developed by a
professional who posted it in a repository. Moving in a
professional setting, there are cases in which developers
search and find code in the wild that is then embedded to a
business application with immeasurable repercussions for the
security of the application [9]. Identifying such code promptly
is very important since, in the case of the student, the professor
can easily decide whether the student committed plagiarism or
not, while in the other case, it will be possible for the software
tester to timely remove the code in question before causing
any irreversible damage to the whole application. Similar code
detection is also valuable in malicious code detection since
viruses usually come with slight variations in order to
outsmart the antivirus systems or in vulnerability code
detection when attempting to locate similar code that is known
to be vulnerable [9].

The work proposed in this paper, utilizes a novel approach
in analyzing source code taking advantage of LERP-RSA data
structure [25-27] and ARPaD [25, 26] algorithm in order to
identify all repeated patterns found in the code under
investigation. The common code detected is further
automatically analyzed and the corresponding results are
visually presented showing similarities in the different code
sequences. The advantages and contributions of the specific
approach can be summarized as follows:

• All the existing common code patterns are analyzed
and found irrespectively of their length using a
commodity computer which to the best of our
knowledge cannot be done with any other approach
with complexity 𝑂(𝑚𝑛 log 𝑛).

• With a simple meta-analysis process, the calculated
results can be easily visualized and further analyzed
using different visualization techniques and user-
defined thresholds depending on the requirements of

643

https://orcid.org/0000-0003-2376-898X
https://orcid.org/0000-0003-1684-7612

the analyst without repeating the data structure
construction and the detection algorithm execution.

• A contemporary dataset with 46 code samples in
Python has been created that exhibits a wide range of
similarities and can be used as a reference dataset for
testing other code similarity detection or plagiarism
detection techniques.

The paper is organized as follows: Section II analyzes the
existing work found in literature related to code similarity
detection and code plagiarism detection. In Section III, the
proposed code detection methodology is outlined, describing
the different phases of the analysis. Section IV presents how
the specific dataset has been created and discusses the findings
of the code similarity detection with the proposed
methodology and the last Section presents the conclusion and
the next steps.

II. RELATED WORK
Code similarity is a well-attended problem that has

occupied many researchers, mainly in the context of code
plagiarism in order to identify students who cheat in their
programming assignments. However, code similarity is a
broader issue since it may have several other implications such
as (a) to identify security issues introduced by the copied code;
(b) to detect variants of malware as it was previously
mentioned; (c) to detect unauthorized use of copyrighted
material in commercial software without proper license, etc.
The principles behind code similarity detection may differ
depending on the code at hand. For example, binary code
similarity detection can be used when the binary code is
available in a specific context [22] while reversed engineered
code can be used in malware analysis and classification [28].
Finally, source code similarity is studied when there is a need
to detect potential cases of plagiarism in programming
assignments [23, 24]. A variation of our approach has been
assessed in malware analysis [28] providing promising results
and in this paper the specific methodology has been altered,
improved and extended in order to cater for the needs of
source code plagiarism detection.

Code plagiarism detection attempts to identify similar
code used in different code sequences especially in
programming assignments. More specifically, in [10-15], a list
of the most typical cases of code alteration applied by students
to avoid detection is presented. These alterations include the
use of different variable names, the altering of formatting, the
change of comments, the application of alternate indentation,
the use of different operators, the reordering of code blocks,
and other techniques that aim to spoof the code plagiarism
detection process. In response to these practices, a number of
code plagiarism techniques have been proposed by the
researchers achieving different success rates.

Cosma & Joy [16] suggest that there are two main
categories of algorithms that have been used for code
plagiarism detection based on fingerprints and string-
matching. Fingerprints are basically collected statistics related
to the source file such as number of keywords, characters per
line, etc. which are then used to compare two different
programs. The more common statistics, the greater is the
similarity of the programs. String-matching algorithms take
advantage of the known syntax of a specific programming
language and analyze the code of the programs based on
common structures identified [17]. As the researchers report,
this technique may be more sensitive to various attacks such

as “code-shuffling”, etc. [16] and thus may not be very
efficient. Our approach addresses the specific issue since it
does not utilize small n-grams as the majority of these
techniques but instead detects all the repeated code patterns
among the code sequences and combines the identified results
showing better persistence to the attacks.

An n-gram approach is proposed in [18] where n-grams of
different size are used to calculate the similarity between the
source code in a large dataset of programming assignments.
The researchers considered the larger n-grams as an indication
of greater similarity but they found out that the specific
approach as they report did not outperform other known
similarity functions such as Okapi BM25. In contrast to the
aforementioned n-grams technique, our approach detects all
repeated patterns regardless of their length, without the need
to define a specific n-gram size. However, this has been
proven to be extremely space and time efficient based on the
complexity described in our paper. Despite that we also
discover that the use of only very long patterns could be
misleading when insertion attacks have been performed, yet,
the discovery of every possible repeated pattern can easily
bypass such attempts.

Other plagiarism detection techniques employ genetic
programming [19] in order to improve the similarity functions
and thus to achieve better results in code similarity detection.
The experiment held with a specific similarity function was
considered successful since the results showed that the
technique outperformed traditional code similarity detection
tools, however, as the researchers reported further
development of such techniques for novel similarity functions
is required in order to be robust.

Another approach is proposed in [20], where instead of
using the source code of a program, the intermediate code
(bytecode) of the programs is used for comparison purposes.
It is claimed that this approach is more efficient since
bytecode avoids a great number of plagiarism attacks however
it is not possible to be applied in all the programming
languages since there are many that do not use bytecode and
are translated directly in native machine code.

There are also techniques that combine different stages of
analysis for code similarity detection. In [21], the researchers
use an “attribute-counting system” in identifying code
similarity which is then improved by applying clustering in
order to improve the detection performance. The specific
method is a two-stage approach as the one proposed in our
case, however, applying totally different strategies in the
implementation of both phases.

 Our proposed approach falls under the string-matching
techniques and attempts to alleviate the shortcomings of the
known methods by combining common patterns found among
the programs, with different length, in different positions and
thus illustrating a more accurate representation of the
similarities.

III. CODE SIMILARITY DETECTION
The proposed methodology is based on our previous

techniques used for text mining for plagiarism detection [29]
and malware classification [28]. In those initial attempts, we
tried to detect text similarities based on previous knowledge
of patterns that could characterize a text similar to another or
parts of code previously classified as malware. Yet, those
methods were significantly easier than the problem we are

644

trying to address in this paper, since the text or code similarity
checking was performed based on one-to-one analysis, such
as in the case of previously labeled data for malware code
detection.

The problem we are trying to tackle is significantly more
complicated for many reasons. First of all, we do not have any
previous knowledge or labeled data regarding the dataset.
Moreover, a one-to-one comparison is not possible, firstly
because there are no referenced, labeled, data and, therefore,
the time complexity of a brute force approach is at least
𝑂(𝑛2), based on the number of sequences (code snippets) to
examine, without taking in consideration other parameters
such as the length of the sequences. Another problem is that
we have to cluster the sequences based on their algorithmic
logic rather than their exact text similarity. For this purpose,
using short patterns with length four, five, six or a few more
characters is completely meaningless, because such short
patterns can easily be formed by programming languages
reserved words, e.g., in Python, if, for, def, else, range, print,
input, etc.

In order to address this problem, the methodology follows
a sequence of steps. First the data need to be cleaned and
prepared for analysis. Then the Longest Expected Repeated
Pattern Reduced Suffix Array (LERP-RSA) [25-27] data
structure is used that allows to the All Repeated Patterns
Detection (ARPaD) [25, 26] algorithm to be executed and
detect all common patterns. The total complexity of the
methodology is calculated based on LERP-RSA construction
and ARPaD execution, which it has been proven in [25-27] to
be 𝑂(𝑚𝑛 log 𝑛) with regard to the input size of m sequences
of length n. Finally, the results of the algorithm need to be
further analyzed with a meta-analysis in order to produce
meaningful output. The process is described in details in the
following sub-sections.

A. Data Cleansing

The first step of the methodology is to clean and prepare
our dataset. Since we care about identifying algorithmic logic
in the code, first we need to clean our sequences from any no-
reserved programming language word such as variable and
function names. Only reserved words and language specific
symbols are preserved as it is also suggested in [18] that
follows a similar strategy. Additionally, any formatting
character such as tab, space, line feed, carriage return, etc. is
removed. Finally, we end up with a single line string
representing the original code, one for each sequence.

B. Multivariate LERP-RSA Construction

The next step in our methodology is the construction of the
multivariate data structure LERP-RSA. The strings created
from the code sequences are stored in the LERP-RSA data
structure using three different columns. The first two columns
hold the standard information of the LERP-RSA which is the
suffix string and the position in which the specific substring
has been found. The additional column stores the index of the
sequence.

It needs to be mentioned here that LERP-RSA uses
additional initial parameters that allows us to optimize data
structure construction. More specifically, the use of the
Longest Expected Repeated Pattern (LERP) value which
defines the longest pattern that it is expected to be repeated
and, therefore, be common among sequences. Yet, in our case
we define this parameter based on the longest pattern that we
want to identify, regardless if any longer may exist. After

creating the initial list of sequences and defining the
parameters, then all produced suffix strings are merged and
lexicographically sorted in ascending order based on the suffix
string column. The specific procedure depends on the
hardware availability and it can run in parallel by sorting the
suffix strings based on their initial character, which can
accelerate the specific step execution significantly.

C. Common Patterns Discovery

After the creation of the multivariate LERP-RSA data
structure, the ARPaD algorithm is executed. An important
initial parameter for ARPaD is the Shorter Pattern Length
(SPL) which is a lower bound for the patterns length that we
want to discover. For example, in this paper, we do not care
for very short patterns, as mentioned above, rather than we
care for patterns of 20 or more characters. The algorithm
identifies all the repeated patterns found in the stored data
structure irrespective of the length of the pattern but between
the SPL and LERP values. Depending on the use of parallel
LERP-RSA construction with the use of subclasses, the
algorithm can also be executed in parallel and produce results
significantly faster. It is important to mention that the results
will contain patterns that occurred at the same sequence. In
this case, the pattern is not important since similarities
between only one sequence cannot be used to define a network
clustering. This is why, the last phase of meta-analysis of the
results is so important in order to eliminate meaningless
patterns.

D. Pattern Results Meta-analysis

As mentioned above, a meta-analysis is fundamental to
clean the results and produce meaningful output that can be
used to cluster our sequences and create their social network.
In this step, first, we need to remove from our results repeated
patterns that could either occur in the same sequence or in
more than one sequence but multiple times. Second, we must
remove overlapping patterns, since they introduce noise in our
results. For example, if the pattern aaaaaa of 25 continuous
a appears at position 20 then the pattern aaaaaa of 24
continuous a appears at positions 20 and 21, the pattern
aaaaaa of 23 continuous a appears at positions 20, 21 and
22, etc. Although in many other problems, this is a very
important knowledge in our case is irrelevant since we care
about the longest possible patterns that exist among different
sequences. The third step is to calculate the overall pattern
coverage for each sequence. For example, if two patterns of
length 30 have been found for a sequence then the total
overlapping length for the sequence will be 60. The fourth step
in the meta-analysis is to create a graph structure, using an
adjacency list of the discovered patterns (as edges) among all
different sequences (vertices). This will allow us to visualize
the results in a very meaningful way as it will be presented in
the experimental analysis section.

IV. EXPERIMENTAL ANALYSIS

A. Dataset

In order to evaluate the proposed methodology, an
individual programming assignment was introduced in a class
of 46 students. The students were provided with a detailed
description of the assignment requesting the implementation
of a specific algorithm. More specifically, it was suggested to
the students to use a specific data structure to store the relevant
data of the assignment and then to create a method for the
implementation of the required calculations. The students

645

were also encouraged to collaborate in small teams for
preparing the assignment, without reporting their
collaboration to conform with General Data Protection
Regulation standards and institutional regulation. Moreover, a
consent form to use their code output for the specific analysis
was also distributed and signed by all the students according
to the ethical guidelines of the institution.

The collected code sequences were then anonymized by
introducing random names and random data values wherever
was necessary. Subsequently, the source code sequences were
processed according to the proposed methodology in order to
detect code similarity among them. The specific anonymized
dataset has been uploaded in github in the following address:
http://github.com/pkarampelas/Code-Similarity-Detection-Dataset/

TABLE I. TABLE TYPE STYLES

Dataset Attributes Values

Number od code sequences 46

Longest length of code sequences 748

Minimum length of code sequences 203

Average length of code sequences 307

Longest length after data cleansing 173

Minimum length after data cleansing 73

Average length after data cleansing 109

Table I presents the dataset statistics before and after the
cleansing phase without formatting characters in between the
code instructions.

Concerning the infrastructure, a laptop with an Intel i7
CPU has been used, with quad core processor and 16GB
RAM. A solid-state disk of 256GB has been also used to store,
process and present analysis results. Several visualizations
have been created that emphasize the interconnection between
sequences.

B. Results & Discussion

First of all, the series of plots (Fig. 1-4) represents the
sequences with their length as a narrow grey line and the
common patterns plotted on top with different colors and
transparency level. This group of plots varies by presenting
patterns with length greater than or equal to 20, 30, 40 and 50.
The second group of plots (Fig. 5-8) illustrates graphs
representing the social networks, created from common
patterns, that have several minimum total overlapping length
thresholds such as 30, 40, 50 and 60. In all of them, the
minimum length of common patterns displayed is equal to 20.
As we can observe in Table II, 11 patterns found with length
great than 52 and 17 with length between 30 and 50.
Additionally, 55 more patterns detected with length between
20 and 30 adding up to a total of 84 patterns. Furthermore, we
can observe in Table III that in total there are 138 sets of
sequences formed with minimum total overlapping length 20.

The SPL parameter used for the experiment is 20 while the
LERP is 100. This parameter initialization allows ARPaD to
detect all repeated patterns with length between 20 and 100,
as it can be observed in Table II. As mentioned before using
only short patterns could be extremely misleading in the sense
that practically all sequences will end up being related
somehow (Fig.1 and Fig. 5). Moreover, the use of only very

long patterns could also be misleading by missing important
relations between sequences having several short patterns in
common (Fig. 4 and Fig. 8). Thus, we care to scan between
different thresholds of common pattern length, e.g., 20, 30, 40
and 50 (Fig. 1-4 respectively) and minimum total overlapping
length, e.g., 30, 40, 50 and 60 (Fig. 5-8 respectively). For
example, sequences 40 and 45 are highly correlated since they
have two common patterns with lengths 87 and 48.
Practically, there is a single character (insertion attack) in
sequence 45 that separates these two patterns, otherwise both
sequences would be exactly identical (Fig. 4) since the total
overlapping length is 135 and the sequences have length 135
and 136 respectively (Table III). On the contrary, sequences 2
and 8 have not any long common pattern, yet, they are also
highly correlated as we can observe in “Fig. 1”, since they
have three common patterns with lengths 33, 29 and 24. These
patterns are separated from few characters in between
(insertion attack) leading to a total overlapping length of 84
characters out of 91 for sequence 2 and 94 for sequence 8
(Table III), which practically means a similarity above 90%.

Except the sequence sets described above, we can observe
some more interesting sets in “Fig. 4” for patterns with length
greater than 50. These sets include two sets of sequences {27,
46} and {5, 19} with a common pattern of length 88, set {16,
28} with a common pattern length 86, set {20, 38} with a
common pattern of length 82, set {5, 7} with a common
pattern length 80, set {41, 22} with a common pattern length
60 and set {12, 14} with a common pattern length 52.
Moreover, there are two more supersets, set {5, 7, 19} with a
common pattern of length 64 and set {6, 16, 28, 39} with a
common pattern length of 54. All these sets can be easily
observed as social networks in plots “Fig. 7” and “Fig. 8”. All
these sets described have been formed from single patterns
that are extremely long comparing to the total length of the
transformed and cleaned code that varies between 73 and 173
characters with a mean of 109 characters (Table I). This
signifies very strong relations among the different code
sequences since it is practically impossible to have such long
patterns in the code without some kind of social connection
between programmers.

However, in these plots we can observe something else,
equally interesting, which is the form of more complex social
networks based on shorter patterns “Fig. 1-2”. For example,
we have the set {9, 38} with total length 78 formed from three
smaller patterns of lengths 20, 24 and 34 and set {27, 38} with
total length of 73 formed from three patterns with lengths 21,
24 and 28. These sets are formed from smaller patterns
because of very few characters which were cleverly inserted
somewhere in between a considerably larger pattern in order
to hide the connection, yet, our methodology managed very
easily to detect them. Moreover, these sets are examples of
largely formed social networks, because set {9, 38} connects
sets {20, 38}, {27, 46} and {27, 38} as we can observe in plot
“Fig. 8”.

Although the aforementioned examination process can
easily be executed manually by investigating visually the
results, there is the need to automate the process and avoid
using arbitrary length thresholds, e.g., 30, 40, etc. as we did
here for presentation purposes. This automation can be
achieved be performing a top down scan on Table III, after
sorting it in descending order on the “Total Length” column.
This column is practically the weights for each edge of the
graph between the vertices of the column “Sequences Sets”.

646

Fig. 1. Sequences and Common Patterns with Length greater than or equal 20

Fig. 2. Sequences and Common Patterns with Length greater than or equal 30

Fig. 3. Sequences and Common Patterns with Length greater than or equal 40

Fig. 4. Sequences and Common Patterns with Length greater than or equal 50

647

Fig. 5. Social network for total overlapping length >= 30

Fig. 6. Social network for total overlapping length >= 40

Fig. 7. Social network for total overlapping length >= 50

Fig. 8. Social network for total overlapping length >= 60

TABLE II. PATTERNS DETECTED WITH LENGTH GREATER THAN OR EQUAL 30

Pattern P.L. Sequences
=[,,,,]=def(,):=forin:if>:==chr(ord()+[])print(,end=)=+else:=chr(ord()+[])print(,

end=)=+
88 27, 46

=[,,,,]==input(:)=def(,):=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print

(,end=)
88 19, 5

,end=)forin:.(ord())=forin:=()+([]).()if==:=else:+=forin:.(chr())forin:print(,,en

d=)(,)
87 40, 45

=input()=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if>:=if==:()else:print

(:)()
86 16, 28

def(,):=forin:if>:==ord()+[]=chr()print(,end=)=+else:=ord()+[]=chr()print(,end=)=

+
82 20, 38

:=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print(,end=)if==:(,)else:(,) 80 5, 7
=input()=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if>:=if==: 69 16, 28, 6
:=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print(,end=) 64 19, 5, 7
=[,,,,]=input()=def():=forin:=ord()=+[]print(chr(),end=)=+if 60 41, 22
)=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if 54 16, 28, 6, 39
print(:,end=)def(,):=forin:print(chr(ord()+[]),end=) 52 12, 14
=input()=[,,,,]iflen()==:=def(,):=[]=[]=[]print(48 40, 45
=input(:)=[,,,,]=print(:,end=)def(,):=forin: 44 8, 12
def():=input()if==:=()forinrange(,len()):= 42 10, 37
):=forin:=ord()=+[]print(chr(),end=)=+if== 42 32, 41
if==:print(:,end=)()else:print(:,end=)() 40 41, 4
):=forin:=ord()=+[]print(chr(),end=)=+if 40 32, 41, 22
if==:=print(chr(),end=)if==:(,)else:(,) 39 8, 2
]=[]def(=,=[,,,,]):forin:=ord().()= 35 33, 43
+[]=chr()print(,end=)=+else:=ord() 34 9, 20, 38
+[]+=if==:=print(chr(),end=)if==:(34 8, 43
print(chr(),end=)if==:(,)else:(,) 33 32, 8, 2
def(,):=if==:=forin:if>:==ord()= 32 26, 7
:=ord()+[]=chr()print(,end=)=+if 32 35, 20
=[,,,,]==input(:)def(,):=forin: 31 20, 23
:=ord()=+[]=chr()print(,end=)=+ 31 6, 39, 9, 16, 28
=print(:)def(,):=forin:=ord()= 30 32, 2
:=ord()+[]=chr()print(,end=)=+ 30 35, 20, 38

648

TABLE III. SEQUENCE SETS WITH TOTAL LENGTH GREATER THAN OR EQUAL TO 20

Sequences
Set

Total
Length

Sequences
Set

Total
Length

Sequences
Set

Total
Length

Sequences
Set

Total
Length

Sequences
Set

Total
Length

Sequences
Set

Total
Length

27, 46 88 32, 8 54 21, 46 27 22, 39 24 8, 5 22 18, 4 20
19, 5 88 32, 2 63 19, 38 26 16, 41 24 8, 7 22 25, 4 20
40, 45 135 26, 7 52 5, 38 26 41, 28 24 35, 37 22 13, 37 20
16, 28 86 35, 20 32 32, 23 25 16, 22 24 20, 37 22 18, 37 20
20, 38 82 20, 23 31 2, 23 25 28, 22 24 37, 38 22 25, 37 20
5, 7 80 9, 6 31 19, 20 25 34, 6 24 5, 46 21 10, 13 20
16, 6 69 9, 39 31 20, 5 25 34, 39 24 27, 5 21 10, 18 20
28, 6 69 16, 9 31 2, 3 25 16, 34 24 19, 46 21 25, 10 20
19, 7 64 9, 28 31 35, 39 25 34, 28 24 27, 19 21 24, 7 40
41, 22 89 35, 38 30 20, 6 25 32, 43 23 20, 13 21 32, 29 20
16, 39 54 2, 43 29 20, 39 25 8, 3 23 13, 23 21 2, 29 20
28, 39 54 4, 22 29 16, 20 25 43, 3 23 35, 23 21 29, 23 20
6, 39 54 9, 27 50 20, 28 25 8, 29 23 9, 46 21 27, 4 20
12, 14 52 25, 18 28 24, 44 24 24, 26 44 20, 46 41 11, 44 20
8, 12 44 27, 38 73 25, 35 24 43, 30 23 27, 20 41 24, 5 20
10, 37 42 46, 38 49 25, 6 24 32, 17 22 41, 30 21 26, 5 40
32, 41 42 16, 35 28 25, 39 24 17, 2 22 4, 30 21 24, 19 20
41, 4 40 35, 28 28 16, 25 24 8, 17 22 30, 22 21 26, 19 40
32, 22 40 35, 6 28 25, 20 24 17, 43 22 8, 23 21 9, 7 20
8, 2 84 10, 15 27 25, 28 24 44, 13 22 9, 19 21 9, 26 20
33, 43 35 8, 14 27 2, 12 24 32, 5 22 9, 5 21 22, 23 20
9, 20 54 25, 13 27 41, 6 24 32, 7 22 4, 37 20 6, 23 20
9, 38 78 18, 13 27 6, 22 24 2, 5 22 10, 4 20 16, 23 20
8, 43 34 27, 21 27 41, 39 24 2, 7 22 4, 13 20 28, 23 20

Scanning the table and using different thresholds on these
weights can provide us with the appropriate social
collaboration networks that we want to identify. Moreover,
these absolute weights can be further exploited by calculating
percentage weights based on the actual length of each
sequence. To give an illustrative example, set {7, 19} edge has
weight 64 but sequence 7 has length 110 while sequence 19
has length 148. Therefore, sequence 7 has 58% coverage
while sequence 19 has 43% coverage. This information can be
further examined to give more insights on our social networks
and create a directed graph by assigning possible influences,
such as, sequence 7 used a code snippet from sequence 19
instead of the opposite.

V. CONLCUSIONS
The paper proposes a novel source code detection method

that can identify all the existing common code patterns
irrespectively of their length using a commodity computer.
The method utilizes an advanced data structure (LERP-RSA)
in order to store the code sequences and facilitate ARPaD
algorithm to thoroughly analyze and detect the common
patterns.

The detected results are then visualized in order to help the
analyst to understand the correlations between the common
patterns in the code sequences and the corresponding social
networks of the programmers who have used similar code is
created. The results have shown that the method is capable to
address various insertion attacks who are usually employed by
students who want to spoof the results of the traditional code
plagiarism detection systems combing all the common
patterns identified in the different code sequences.

Another important contribution of the work, is the
construction of a dataset of similar code snippets that will be
available online and can be used as a reference dataset by other

researchers in order to assess different code similarity
techniques.

Finally, the proposed method can yet be improved using
more sophisticated metrics to calculate the overall similarity
among the code snippets and produce more accurate results.

REFERENCES
[1] StackOverflow.com, https://stackoverflow.com/company (accessed

Sep. 10, 2020)
[2] StackExchange.com, https://stackexchange.com/about (accessed Sep.

10, 2020)
[3] Quora.com, https://www.quora.com/about (accessed Sep. 10, 2020)
[4] Reddit.com, https://www.redditinc.com (accessed Sep. 10, 2020)
[5] Google Groups, https://groups.google.com/forum/#!overview

(accessed Sep. 10, 2020)
[6] GitHub.com, https://github.com (accessed Sep. 10, 2020)
[7] Atlassian BitBucket, https://bitbucket.org/product (accessed Sep. 10,

2020)
[8] SourceForge.net, https://sourceforge.net (accessed Sep. 10, 2020)
[9] Xu X, Liu C, Feng Q, Yin H, Song L, Song D. Neural network-based

graph embedding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security 2017 Oct 30 (pp. 363-376).

[10] Arwin, C., & Tahaghoghi, S. M. (2006, January). Plagiarism detection
across programming languages. In Proceedings of the 29th
Australasian Computer Science Conference-Volume 48 (pp. 277-286).

[11] Whale, G. (1986, January). Detection of plagiarism in student
programs. In Proceedings of the 9th Australian Computer Science
Conference (pp. 231-241). Australian Computer Society.

[12] Freire, M., Cebrián, M., & Del Rosal, E. (2007). AC: An integrated
source code plagiarism detection environment. arXiv preprint
cs.IT/0703136.

[13] Joy, M. S., Sinclair, J. E., Boyatt, R., Yau, J. K., & Cosma, G. (2013).
Student perspectives on source-code plagiarism. International Journal
for Educational Integrity, 9(1).

[14] Cosma, G., & Joy, M. (2008). Towards a definition of source-code
plagiarism. IEEE Transactions on Education, 51(2), 195-200.

649

[15] Gibson, J. Paul. "Software reuse and plagiarism: a code of practice." In
Proceedings of the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science education, pp. 55-59.
2009.

[16] Cosma, G., & Joy, M. (2012). Evaluating the performance of lsa for
source-code plagiarism detection. Informatica, 36(4).

[17] Kustanto, C., & Liem, I. (2009, May). Automatic source code
plagiarism detection. In 2009 10th ACIS International Conference on
Software Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing (pp. 481-486). IEEE.

[18] Burrows, S., & Tahaghoghi, S. M. (2007, December). Source code
authorship attribution using n-grams. In Proceedings of the Twelth
Australasian Document Computing Symposium, Melbourne, Australia,
RMIT University (pp. 32-39). Citeseer.

[19] Ciesielski, V., Wu, N., & Tahaghoghi, S. (2008, July). Evolving
similarity functions for code plagiarism detection. In Proceedings of
the 10th annual conference on Genetic and evolutionary computation
(pp. 1453-1460).

[20] Karnalim, Oscar. "Detecting source code plagiarism on introductory
programming course assignments using a bytecode approach." In 2016
International Conference on Information & Communication
Technology and Systems (ICTS), pp. 63-68. IEEE, 2016.

[21] Moussiades, L., & Vakali, A. (2005). PDetect: A clustering approach
for detecting plagiarism in source code datasets. The computer journal,
48(6), 651-661.

[22] Liu, B., Huo, W., Zhang, C., Li, W., Li, F., Piao, A., & Zou, W. (2018,
September). αdiff: cross-version binary code similarity detection with
dnn. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (pp. 667-678).

[23] Novak, M., Joy, M., & Kermek, D. (2019). Source-code similarity
detection and detection tools Used in academia: a systematic review.
ACM Transactions on Computing Education (TOCE), 19(3), 1-37.

[24] Chilowicz, M., Duris, E., & Roussel, G. (2009, May). Syntax tree
fingerprinting for source code similarity detection. In 2009 IEEE 17th
International Conference on Program Comprehension (pp. 243-247).
IEEE.

[25] Xylogiannopoulos, K. F. “Data structures, algorithms and applications
for big data analytics: single, multiple and all repeated patterns
detection in discrete sequences.” PhD thesis, University of Calgary,
2017

[26] Xylogiannopoulos, K.F., Karampelas, P., Alhajj, R. “Repeated patterns
detection in big data using classification and parallelism on LERP
reduced suffix arrays” Appl. Intell. 45(3), 2016, pp. 567– 561

[27] Xylogiannopoulos, K.F., Karampelas, P., Alhajj, R. “Analyzing very
large time series using suffix arrays” Appl. Intell. 41(3), 2014, pp.941–
955

[28] Xylogiannopoulos, K. F., Karampelas, P., Alhajj, R., (2019) “Text
Mining for Malware Classification Using Multivariate All Repeated
Patterns Detection.” ASONAM 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining –
Foundations and Applications of Big Data Analytics (Vancouver, BC,
Canada), pp. 887-894

[29] Xylogiannopoulos, K. F., Karampelas, P., Alhajj, R., (2018) “Text
Mining for Plagiarism Detection: Multivariate Pattern Detection for
Recognition of Text Similarities.” ASONAM 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis
and Mining – Foundations and Applications of Big Data Analytics
(Barcelona, Spain), pp. 938-945

650

