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Abstract—The availability of code in many online 
repositories and collaborating platforms has posed new 
challenges in source code attribution not only for plagiarism 
detection but also in other settings such as in the use of insecure 
copied code in commercial application, etc. The sophistication 
of different type of attacks in the code sequence used especially 
by the students requires more effective code similarity detection 
algorithms. In this paper, a novel source code detection method 
is proposed that can identify programmers’ social network 
based on advanced pattern detection text mining techniques. 
The proposed methodology has significant advantages against 
existing methods since ARPaD algorithm can detect all common 
patterns between all possible code sequences in one run. 
Therefore, the computational time is massively reduced to 
𝑶(𝒎𝒏 𝐥𝐨𝐠𝒏) . In order to assess the performance of the 
methodology, a new dataset was created by assigning to 46 
students a code project with specific instructions. The 
assessment results have been visualized, producing the social 
network graphs of possible collaboration teams. 

Keywords—code similarity detection, social network analysis, 

code plagiarism detection, text mining, LERP-RSA, ARPaD 

I. INTRODUCTION 
The social web has fostered a number of novel interactions 

among people of every discipline either related to computer 
science or not. Various types of electronic social networks, 
online collaborating platforms, photo and video sharing 
websites and review platforms are some of the types of social 
platforms that emerged in the social web. Through the years, 
these platforms appear to have been transformed in more 
focused platforms that satisfy particular needs of their 
participants. In this socially connected world, programmers 
have developed their own online social places in which they 
exchange information, knowledge, advice, even source code. 
In this context, a great number of specialized social platforms 
have arisen in the service of programmers such as Questions 
and Answers websites, Code Repositories, Programmers’ 
Blogs and several other platforms that facilitates the 
communication among them.  

Popular collaboration platforms such as StackOverflow 
[1] reports more than 100 million visits per month having 
answers for more than 20 million questions related to coding. 
The parent company StackExchange [2] reports an average 
rate of approximately 420 million visits per month in all the 
173 different Q&A communities hosted, a great deal of them 
related to programming. Other less specialized communities, 
such as Quora [3], Reddit [4] and Google Groups [5] host 
numerous coding communities formed by programmers, 
dedicated to solve programming problems, sharing 
programming knowledge and teaching younger members of 
the communities. In addition, code hosting platforms such as 
GitHub [6], BitBucket [7] and SourceForge [8] host numerous 

programs for any existing programming environment and 
language. GitHub alone reports more than 100 million 
repositories up to 2019.  

As it can be understood by the abovementioned statistics, 
there is a plethora of code fragments all over the Internet 
accessible to all. In this sense, writing a program, responding 
to a programming exercise or solving a coding issue has 
become easier than ever before. However, in some cases this 
broad availability of code in the wild may raise various issues 
depending on the context of use. For example, when the code 
found in any of the abovementioned platforms has been used 
to respond to a programming exercise by a student, then there 
is a plagiarism case, since the purpose of the exercise is the 
professor to decide whether the student is able to deliver a 
meaningful algorithm and programming code that solves the 
assigned problem and not to grade code developed by a 
professional who posted it in a repository. Moving in a 
professional setting, there are cases in which developers 
search and find code in the wild that is then embedded to a 
business application with immeasurable repercussions for the 
security of the application [9]. Identifying such code promptly 
is very important since, in the case of the student, the professor 
can easily decide whether the student committed plagiarism or 
not, while in the other case, it will be possible for the software 
tester to timely remove the code in question before causing 
any irreversible damage to the whole application. Similar code 
detection is also valuable in malicious code detection since 
viruses usually come with slight variations in order to 
outsmart the antivirus systems or in vulnerability code 
detection when attempting to locate similar code that is known 
to be vulnerable [9]. 

The work proposed in this paper, utilizes a novel approach 
in analyzing source code taking advantage of LERP-RSA data 
structure [25-27] and ARPaD [25, 26] algorithm in order to 
identify all repeated patterns found in the code under 
investigation. The common code detected is further 
automatically analyzed and the corresponding results are 
visually presented showing similarities in the different code 
sequences. The advantages and contributions of the specific 
approach can be summarized as follows: 

• All the existing common code patterns are analyzed 
and found irrespectively of their length using a 
commodity computer which to the best of our 
knowledge cannot be done with any other approach 
with complexity 𝑂(𝑚𝑛 log 𝑛). 

• With a simple meta-analysis process, the calculated 
results can be easily visualized and further analyzed 
using different visualization techniques and user-
defined thresholds depending on the requirements of 
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the analyst without repeating the data structure 
construction and the detection algorithm execution. 

• A contemporary dataset with 46 code samples in 
Python has been created that exhibits a wide range of 
similarities and can be used as a reference dataset for 
testing other code similarity detection or plagiarism 
detection techniques.   

The paper is organized as follows: Section II analyzes the 
existing work found in literature related to code similarity 
detection and code plagiarism detection. In Section III, the 
proposed code detection methodology is outlined, describing 
the different phases of the analysis. Section IV presents how 
the specific dataset has been created and discusses the findings 
of the code similarity detection with the proposed 
methodology and the last Section presents the conclusion and 
the next steps. 

II. RELATED WORK  
Code similarity is a well-attended problem that has 

occupied many researchers, mainly in the context of code 
plagiarism in order to identify students who cheat in their 
programming assignments. However, code similarity is a 
broader issue since it may have several other implications such 
as (a) to identify security issues introduced by the copied code; 
(b) to detect variants of malware as it was previously 
mentioned; (c) to detect unauthorized use of copyrighted 
material in commercial software without proper license, etc. 
The principles behind code similarity detection may differ 
depending on the code at hand. For example, binary code 
similarity detection can be used when the binary code is 
available in a specific context [22] while reversed engineered 
code can be used in malware analysis and classification [28]. 
Finally, source code similarity is studied when there is a need 
to detect potential cases of plagiarism in programming 
assignments [23, 24]. A variation of our approach has been 
assessed in malware analysis [28] providing promising results 
and in this paper the specific methodology has been altered, 
improved and extended in order to cater for the needs of 
source code plagiarism detection.  

Code plagiarism detection attempts to identify similar 
code used in different code sequences especially in 
programming assignments. More specifically, in [10-15], a list 
of the most typical cases of code alteration applied by students 
to avoid detection is presented. These alterations include the 
use of different variable names, the altering of formatting, the 
change of comments, the application of alternate indentation, 
the use of different operators, the reordering of code blocks, 
and other techniques that aim to spoof the code plagiarism 
detection process. In response to these practices, a number of 
code plagiarism techniques have been proposed by the 
researchers achieving different success rates.  

Cosma & Joy [16] suggest that there are two main 
categories of algorithms that have been used for code 
plagiarism detection based on fingerprints and string-
matching. Fingerprints are basically collected statistics related 
to the source file such as number of keywords, characters per 
line, etc. which are then used to compare two different 
programs. The more common statistics, the greater is the 
similarity of the programs. String-matching algorithms take 
advantage of the known syntax of a specific programming 
language and analyze the code of the programs based on 
common structures identified [17]. As the researchers report, 
this technique may be more sensitive to various attacks such 

as “code-shuffling”, etc. [16] and thus may not be very 
efficient. Our approach addresses the specific issue since it 
does not utilize small n-grams as the majority of these 
techniques but instead detects all the repeated code patterns 
among the code sequences and combines the identified results 
showing better persistence to the attacks.  

An n-gram approach is proposed in [18] where n-grams of 
different size are used to calculate the similarity between the 
source code in a large dataset of programming assignments. 
The researchers considered the larger n-grams as an indication 
of greater similarity but they found out that the specific 
approach as they report did not outperform other known 
similarity functions such as Okapi BM25. In contrast to the 
aforementioned n-grams technique, our approach detects all 
repeated patterns regardless of their length, without the need 
to define a specific n-gram size. However, this has been 
proven to be extremely space and time efficient based on the 
complexity described in our paper. Despite that we also 
discover that the use of only very long patterns could be 
misleading when insertion attacks have been performed, yet, 
the discovery of every possible repeated pattern can easily 
bypass such attempts.  

Other plagiarism detection techniques employ genetic 
programming [19] in order to improve the similarity functions 
and thus to achieve better results in code similarity detection. 
The experiment held with a specific similarity function was 
considered successful since the results showed that the 
technique outperformed traditional code similarity detection 
tools, however, as the researchers reported further 
development of such techniques for novel similarity functions 
is required in order to be robust. 

Another approach is proposed in [20], where instead of 
using the source code of a program, the intermediate code 
(bytecode) of the programs is used for comparison purposes. 
It is claimed that this approach is more efficient since 
bytecode avoids a great number of plagiarism attacks however 
it is not possible to be applied in all the programming 
languages since there are many that do not use bytecode and 
are translated directly in native machine code.  

There are also techniques that combine different stages of 
analysis for code similarity detection. In [21], the researchers 
use an “attribute-counting system” in identifying code 
similarity which is then improved by applying clustering in 
order to improve the detection performance. The specific 
method is a two-stage approach as the one proposed in our 
case, however, applying totally different strategies in the 
implementation of both phases. 

  Our proposed approach falls under the string-matching 
techniques and attempts to alleviate the shortcomings of the 
known methods by combining common patterns found among 
the programs, with different length, in different positions and 
thus illustrating a more accurate representation of the 
similarities. 

III. CODE SIMILARITY DETECTION 
The proposed methodology is based on our previous 

techniques used for text mining for plagiarism detection [29] 
and malware classification [28]. In those initial attempts, we 
tried to detect text similarities based on previous knowledge 
of patterns that could characterize a text similar to another or 
parts of code previously classified as malware. Yet, those 
methods were significantly easier than the problem we are 
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trying to address in this paper, since the text or code similarity 
checking was performed based on one-to-one analysis, such 
as in the case of previously labeled data for malware code 
detection. 

The problem we are trying to tackle is significantly more 
complicated for many reasons. First of all, we do not have any 
previous knowledge or labeled data regarding the dataset. 
Moreover, a one-to-one comparison is not possible, firstly 
because there are no referenced, labeled, data and, therefore, 
the time complexity of a brute force approach is at least 
𝑂(𝑛2), based on the number of sequences (code snippets) to 
examine, without taking in consideration other parameters 
such as the length of the sequences. Another problem is that 
we have to cluster the sequences based on their algorithmic 
logic rather than their exact text similarity. For this purpose, 
using short patterns with length four, five, six or a few more 
characters is completely meaningless, because such short 
patterns can easily be formed by programming languages 
reserved words, e.g., in Python, if, for, def, else, range, print, 
input, etc.  

In order to address this problem, the methodology follows 
a sequence of steps. First the data need to be cleaned and 
prepared for analysis. Then the Longest Expected Repeated 
Pattern Reduced Suffix Array (LERP-RSA) [25-27] data 
structure is used that allows to the All Repeated Patterns 
Detection (ARPaD) [25, 26] algorithm to be executed and 
detect all common patterns. The total complexity of the 
methodology is calculated based on LERP-RSA construction 
and ARPaD execution, which it has been proven in [25-27] to 
be 𝑂(𝑚𝑛 log 𝑛) with regard to the input size of m sequences 
of length n. Finally, the results of the algorithm need to be 
further analyzed with a meta-analysis in order to produce 
meaningful output. The process is described in details in the 
following sub-sections. 

A. Data Cleansing 

The first step of the methodology is to clean and prepare 
our dataset. Since we care about identifying algorithmic logic 
in the code, first we need to clean our sequences from any no-
reserved programming language word such as variable and 
function names. Only reserved words and language specific 
symbols are preserved as it is also suggested in [18] that 
follows a similar strategy. Additionally, any formatting 
character such as tab, space, line feed, carriage return, etc. is 
removed. Finally, we end up with a single line string 
representing the original code, one for each sequence. 

B. Multivariate LERP-RSA Construction 

The next step in our methodology is the construction of the 
multivariate data structure LERP-RSA. The strings created 
from the code sequences are stored in the LERP-RSA data 
structure using three different columns. The first two columns 
hold the standard information of the LERP-RSA which is the 
suffix string and the position in which the specific substring 
has been found. The additional column stores the index of the 
sequence. 

It needs to be mentioned here that LERP-RSA uses 
additional initial parameters that allows us to optimize data 
structure construction. More specifically, the use of the 
Longest Expected Repeated Pattern (LERP) value which 
defines the longest pattern that it is expected to be repeated 
and, therefore, be common among sequences. Yet, in our case 
we define this parameter based on the longest pattern that we 
want to identify, regardless if any longer may exist. After 

creating the initial list of sequences and defining the 
parameters, then all produced suffix strings are merged and 
lexicographically sorted in ascending order based on the suffix 
string column. The specific procedure depends on the 
hardware availability and it can run in parallel by sorting the 
suffix strings based on their initial character, which can 
accelerate the specific step execution significantly. 

C. Common Patterns Discovery 

After the creation of the multivariate LERP-RSA data 
structure, the ARPaD algorithm is executed. An important 
initial parameter for ARPaD is the Shorter Pattern Length 
(SPL) which is a lower bound for the patterns length that we 
want to discover. For example, in this paper, we do not care 
for very short patterns, as mentioned above, rather than we 
care for patterns of 20 or more characters. The algorithm 
identifies all the repeated patterns found in the stored data 
structure irrespective of the length of the pattern but between 
the SPL and LERP values. Depending on the use of parallel 
LERP-RSA construction with the use of subclasses, the 
algorithm can also be executed in parallel and produce results 
significantly faster. It is important to mention that the results 
will contain patterns that occurred at the same sequence. In 
this case, the pattern is not important since similarities 
between only one sequence cannot be used to define a network 
clustering. This is why, the last phase of meta-analysis of the 
results is so important in order to eliminate meaningless 
patterns. 

D. Pattern Results Meta-analysis 

As mentioned above, a meta-analysis is fundamental to 
clean the results and produce meaningful output that can be 
used to cluster our sequences and create their social network. 
In this step, first, we need to remove from our results repeated 
patterns that could either occur in the same sequence or in 
more than one sequence but multiple times. Second, we must 
remove overlapping patterns, since they introduce noise in our 
results. For example, if the pattern aaaaaa of 25 continuous 
a appears at position 20 then the pattern aaaaaa of 24 
continuous a appears at positions 20 and 21, the pattern 
aaaaaa of 23 continuous a appears at positions 20, 21 and 
22, etc. Although in many other problems, this is a very 
important knowledge in our case is irrelevant since we care 
about the longest possible patterns that exist among different 
sequences. The third step is to calculate the overall pattern 
coverage for each sequence. For example, if two patterns of 
length 30 have been found for a sequence then the total 
overlapping length for the sequence will be 60. The fourth step 
in the meta-analysis is to create a graph structure, using an 
adjacency list of the discovered patterns (as edges) among all 
different sequences (vertices). This will allow us to visualize 
the results in a very meaningful way as it will be presented in 
the experimental analysis section. 

IV. EXPERIMENTAL ANALYSIS 

A. Dataset 

In order to evaluate the proposed methodology, an 
individual programming assignment was introduced in a class 
of 46 students. The students were provided with a detailed 
description of the assignment requesting the implementation 
of a specific algorithm. More specifically, it was suggested to 
the students to use a specific data structure to store the relevant 
data of the assignment and then to create a method for the 
implementation of the required calculations. The students 
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were also encouraged to collaborate in small teams for 
preparing the assignment, without reporting their 
collaboration to conform with General Data Protection 
Regulation standards and institutional regulation. Moreover, a 
consent form to use their code output for the specific analysis 
was also distributed and signed by all the students according 
to the ethical guidelines of the institution. 

The collected code sequences were then anonymized by 
introducing random names and random data values wherever 
was necessary. Subsequently, the source code sequences were 
processed according to the proposed methodology in order to 
detect code similarity among them. The specific anonymized 
dataset has been uploaded in github in the following address: 
http://github.com/pkarampelas/Code-Similarity-Detection-Dataset/ 

TABLE I.  TABLE TYPE STYLES 

Dataset Attributes Values 

Number od code sequences 46 

Longest length of code sequences 748 

Minimum length of code sequences 203 

Average length of code sequences 307 

Longest length after data cleansing 173 

Minimum length after data cleansing 73 

Average length after data cleansing 109 

 

Table I presents the dataset statistics before and after the 
cleansing phase without formatting characters in between the 
code instructions. 

Concerning the infrastructure, a laptop with an Intel i7 
CPU has been used, with quad core processor and 16GB 
RAM. A solid-state disk of 256GB has been also used to store, 
process and present analysis results. Several visualizations 
have been created that emphasize the interconnection between 
sequences. 

B. Results & Discussion 

First of all, the series of plots (Fig. 1-4) represents the 
sequences with their length as a narrow grey line and the 
common patterns plotted on top with different colors and 
transparency level. This group of plots varies by presenting 
patterns with length greater than or equal to 20, 30, 40 and 50. 
The second group of plots (Fig. 5-8) illustrates graphs 
representing the social networks, created from common 
patterns, that have several minimum total overlapping length 
thresholds such as 30, 40, 50 and 60. In all of them, the 
minimum length of common patterns displayed is equal to 20. 
As we can observe in Table II, 11 patterns found with length 
great than 52 and 17 with length between 30 and 50. 
Additionally, 55 more patterns detected with length between 
20 and 30 adding up to a total of 84 patterns. Furthermore, we 
can observe in Table III that in total there are 138 sets of 
sequences formed with minimum total overlapping length 20. 

The SPL parameter used for the experiment is 20 while the 
LERP is 100. This parameter initialization allows ARPaD to 
detect all repeated patterns with length between 20 and 100, 
as it can be observed in Table II. As mentioned before using 
only short patterns could be extremely misleading in the sense 
that practically all sequences will end up being related 
somehow (Fig.1 and Fig. 5). Moreover, the use of only very 

long patterns could also be misleading by missing important 
relations between sequences having several short patterns in 
common (Fig. 4 and Fig. 8). Thus, we care to scan between 
different thresholds of common pattern length, e.g., 20, 30, 40 
and 50 (Fig. 1-4 respectively) and minimum total overlapping 
length, e.g., 30, 40, 50 and 60 (Fig. 5-8 respectively). For 
example, sequences 40 and 45 are highly correlated since they 
have two common patterns with lengths 87 and 48. 
Practically, there is a single character (insertion attack) in 
sequence 45 that separates these two patterns, otherwise both 
sequences would be exactly identical (Fig. 4) since the total 
overlapping length is 135 and the sequences have length 135 
and 136 respectively (Table III). On the contrary, sequences 2 
and 8 have not any long common pattern, yet, they are also 
highly correlated as we can observe in “Fig. 1”, since they 
have three common patterns with lengths 33, 29 and 24. These 
patterns are separated from few characters in between 
(insertion attack) leading to a total overlapping length of 84 
characters out of 91 for sequence 2 and 94 for sequence 8 
(Table III), which practically means a similarity above 90%. 

Except the sequence sets described above, we can observe 
some more interesting sets in “Fig. 4” for patterns with length 
greater than 50. These sets include two sets of sequences {27, 
46} and {5, 19} with a common pattern of length 88, set {16, 
28} with a common pattern length 86, set {20, 38} with a 
common pattern of length 82, set {5, 7} with a common 
pattern length 80, set {41, 22} with a common pattern length 
60 and set {12, 14} with a common pattern length 52. 
Moreover, there are two more supersets, set {5, 7, 19} with a 
common pattern of length 64 and set {6, 16, 28, 39} with a 
common pattern length of 54. All these sets can be easily 
observed as social networks in plots “Fig. 7” and “Fig. 8”. All 
these sets described have been formed from single patterns 
that are extremely long comparing to the total length of the 
transformed and cleaned code that varies between 73 and 173 
characters with a mean of 109 characters (Table I). This 
signifies very strong relations among the different code 
sequences since it is practically impossible to have such long 
patterns in the code without some kind of social connection 
between programmers. 

However, in these plots we can observe something else, 
equally interesting, which is the form of more complex social 
networks based on shorter patterns “Fig. 1-2”. For example, 
we have the set {9, 38} with total length 78 formed from three 
smaller patterns of lengths 20, 24 and 34 and set {27, 38} with 
total length of 73 formed from three patterns with lengths 21, 
24 and 28. These sets are formed from smaller patterns 
because of very few characters which were cleverly inserted 
somewhere in between a considerably larger pattern in order 
to hide the connection, yet, our methodology managed very 
easily to detect them. Moreover, these sets are examples of 
largely formed social networks, because set {9, 38} connects 
sets {20, 38}, {27, 46} and {27, 38} as we can observe in plot 
“Fig. 8”. 

Although the aforementioned examination process can 
easily be executed manually by investigating visually the 
results, there is the need to automate the process and avoid 
using arbitrary length thresholds, e.g., 30, 40, etc. as we did 
here for presentation purposes. This automation can be 
achieved be performing a top down scan on Table III, after 
sorting it in descending order on the “Total Length” column. 
This column is practically the weights for each edge of the 
graph between the vertices of the column “Sequences Sets”. 
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Fig. 1. Sequences and Common Patterns with Length greater than or equal 20 

 
Fig. 2. Sequences and Common Patterns with Length greater than or equal 30 

 
Fig. 3. Sequences and Common Patterns with Length greater than or equal 40 

 
Fig. 4. Sequences and Common Patterns with Length greater than or equal 50 
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Fig. 5. Social network for total overlapping length >= 30 

 
Fig. 6. Social network for total overlapping length >= 40 

 
Fig. 7. Social network for total overlapping length >= 50 

 
Fig. 8. Social network for total overlapping length >= 60 

 

TABLE II.  PATTERNS DETECTED WITH LENGTH GREATER THAN  OR EQUAL 30 

Pattern P.L. Sequences 
=[,,,,]=def(,):=forin:if>:==chr(ord()+[])print(,end=)=+else:=chr(ord()+[])print(,

end=)=+ 
88 27, 46 

=[,,,,]==input(:)=def(,):=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print

(,end=) 
88 19, 5 

,end=)forin:.(ord())=forin:=()+([]).()if==:=else:+=forin:.(chr())forin:print(,,en

d=)(,) 
87 40, 45 

=input()=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if>:=if==:()else:print

(:)() 
86 16, 28 

def(,):=forin:if>:==ord()+[]=chr()print(,end=)=+else:=ord()+[]=chr()print(,end=)=

+ 
82 20, 38 

:=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print(,end=)if==:(,)else:(,) 80 5, 7 
=input()=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if>:=if==: 69 16, 28, 6 
:=forin:if>:==ord()=ord()+[]=+else:=ord()+[]=+=chr()print(,end=) 64 19, 5, 7 
=[,,,,]=input()=def():=forin:=ord()=+[]print(chr(),end=)=+if 60 41, 22 
)=[,,,,]=def():=forin:=ord()=+[]=chr()print(,end=)=+if 54 16, 28, 6, 39 
print(:,end=)def(,):=forin:print(chr(ord()+[]),end=) 52 12, 14 
=input()=[,,,,]iflen()==:=def(,):=[]=[]=[]print( 48 40, 45 
=input(:)=[,,,,]=print(:,end=)def(,):=forin: 44 8, 12 
def():=input()if==:=()forinrange(,len()):= 42 10, 37 
):=forin:=ord()=+[]print(chr(),end=)=+if== 42 32, 41 
if==:print(:,end=)()else:print(:,end=)() 40 41, 4 
):=forin:=ord()=+[]print(chr(),end=)=+if 40 32, 41, 22 
if==:=print(chr(),end=)if==:(,)else:(,) 39 8, 2 
]=[]def(=,=[,,,,]):forin:=ord().()= 35 33, 43 
+[]=chr()print(,end=)=+else:=ord() 34 9, 20, 38 
+[]+=if==:=print(chr(),end=)if==:( 34 8, 43 
print(chr(),end=)if==:(,)else:(,) 33 32, 8, 2 
def(,):=if==:=forin:if>:==ord()= 32 26, 7 
:=ord()+[]=chr()print(,end=)=+if 32 35, 20 
=[,,,,]==input(:)def(,):=forin: 31 20, 23 
:=ord()=+[]=chr()print(,end=)=+ 31 6, 39, 9, 16, 28 
=print(:)def(,):=forin:=ord()= 30 32, 2 
:=ord()+[]=chr()print(,end=)=+ 30 35, 20, 38 
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TABLE III.  SEQUENCE SETS WITH TOTAL LENGTH GREATER THAN OR EQUAL TO 20 

Sequences 
Set 

Total 
Length 

Sequences 
Set 

Total 
Length 

Sequences 
Set 

Total 
Length 

Sequences 
Set 

Total 
Length 

Sequences 
Set 

Total 
Length 

Sequences 
Set 

Total 
Length 

27, 46 88 32, 8 54 21, 46 27 22, 39 24 8, 5 22 18, 4 20 
19, 5 88 32, 2 63 19, 38 26 16, 41 24 8, 7 22 25, 4 20 
40, 45 135 26, 7 52 5, 38 26 41, 28 24 35, 37 22 13, 37 20 
16, 28 86 35, 20 32 32, 23 25 16, 22 24 20, 37 22 18, 37 20 
20, 38 82 20, 23 31 2, 23 25 28, 22 24 37, 38 22 25, 37 20 
5, 7 80 9, 6 31 19, 20 25 34, 6 24 5, 46 21 10, 13 20 
16, 6 69 9, 39 31 20, 5 25 34, 39 24 27, 5 21 10, 18 20 
28, 6 69 16, 9 31 2, 3 25 16, 34 24 19, 46 21 25, 10 20 
19, 7 64 9, 28 31 35, 39 25 34, 28 24 27, 19 21 24, 7 40 
41, 22 89 35, 38 30 20, 6 25 32, 43 23 20, 13 21 32, 29 20 
16, 39 54 2, 43 29 20, 39 25 8, 3 23 13, 23 21 2, 29 20 
28, 39 54 4, 22 29 16, 20 25 43, 3 23 35, 23 21 29, 23 20 
6, 39 54 9, 27 50 20, 28 25 8, 29 23 9, 46 21 27, 4 20 
12, 14 52 25, 18 28 24, 44 24 24, 26 44 20, 46 41 11, 44 20 
8, 12 44 27, 38 73 25, 35 24 43, 30 23 27, 20 41 24, 5 20 
10, 37 42 46, 38 49 25, 6 24 32, 17 22 41, 30 21 26, 5 40 
32, 41 42 16, 35 28 25, 39 24 17, 2 22 4, 30 21 24, 19 20 
41, 4 40 35, 28 28 16, 25 24 8, 17 22 30, 22 21 26, 19 40 
32, 22 40 35, 6 28 25, 20 24 17, 43 22 8, 23 21 9, 7 20 
8, 2 84 10, 15 27 25, 28 24 44, 13 22 9, 19 21 9, 26 20 
33, 43 35 8, 14 27 2, 12 24 32, 5 22 9, 5 21 22, 23 20 
9, 20 54 25, 13 27 41, 6 24 32, 7 22 4, 37 20 6, 23 20 
9, 38 78 18, 13 27 6, 22 24 2, 5 22 10, 4 20 16, 23 20 
8, 43 34 27, 21 27 41, 39 24 2, 7 22 4, 13 20 28, 23 20 

 

Scanning the table and using different thresholds on these 
weights can provide us with the appropriate social 
collaboration networks that we want to identify. Moreover, 
these absolute weights can be further exploited by calculating 
percentage weights based on the actual length of each 
sequence. To give an illustrative example, set {7, 19} edge has 
weight 64 but sequence 7 has length 110 while sequence 19 
has length 148. Therefore, sequence 7 has 58% coverage 
while sequence 19 has 43% coverage. This information can be 
further examined to give more insights on our social networks 
and create a directed graph by assigning possible influences, 
such as, sequence 7 used a code snippet from sequence 19 
instead of the opposite. 

V. CONLCUSIONS 
The paper proposes a novel source code detection method 

that can identify all the existing common code patterns 
irrespectively of their length using a commodity computer. 
The method utilizes an advanced data structure (LERP-RSA) 
in order to store the code sequences and facilitate ARPaD 
algorithm to thoroughly analyze and detect the common 
patterns. 

The detected results are then visualized in order to help the 
analyst to understand the correlations between the common 
patterns in the code sequences and the corresponding social 
networks of the programmers who have used similar code is 
created. The results have shown that the method is capable to 
address various insertion attacks who are usually employed by 
students who want to spoof the results of the traditional code 
plagiarism detection systems combing all the common 
patterns identified in the different code sequences.  

Another important contribution of the work, is the 
construction of a dataset of similar code snippets that will be 
available online and can be used as a reference dataset by other 

researchers in order to assess different code similarity 
techniques.  

Finally, the proposed method can yet be improved using 
more sophisticated metrics to calculate the overall similarity 
among the code snippets and produce more accurate results.  
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