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Abstract—Technological advancements in the current era of 

big data have led to rapid generation and collection of very large 

amounts of valuable data from a wide variety of rich data sources. 

As rich data sources, social networks consist of social entities that 

are linked by some social relationships (e.g., kinship, 

colleagueship, co-authorship, friendship, followship). Usually, 

these networks are very big but also very sparse. Embedded in the 

very sparse but very big networks are implicit, previously 

unknown and potentially useful information and knowledge that 

can be discovered by social network analysis and mining. In this 

paper, we aim to discover interesting social relationships from 

very sparse but very big social network data. Due to the sparsity 

of the data, we effectively compress bitmaps representing social 

entities in the data, from which useful information can be mined 

and interesting knowledge can be discovered. Evaluation results 

show the effectiveness of our compression scheme for very sparse 

but very big social network data. 
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I. INTRODUCTION 

Technological advancements in the current era of big data 
[1-6] have led to rapid generation and collection of very large 
amounts of valuable data from a wide variety of rich data 
sources. These big data can be of different level veracity, with 
some precise data and some imprecise and uncertain data [7-9]. 
Examples include data generated or collected from: 

• bio-engineering, bio-informatics, and bio-medical 
applications (e.g., omic data like genomic data [10-13]); 

• e-commerce activities [14, 15], 

• entertainment (e.g., movies) [16], games [17, 18], and 
music [19-21]; 

• financial and stock markets [22-24]; 

• healthcare sector [25] (e.g., disease reports [26, 27], 
epidemiological data and statistics [28-33]); 

• traffic and road conditions [34-39]. 

In addition, as one of the aforementioned rich data sources, 
social networks [40-43] (e.g., co-authorship networks [44, 45]) 
consist of social entities that are linked by some social 
relationships. For instance, a social entity can be the next-of-kin, 

colleague, co-author, mutual friend, follower, and/or followee of 
another social entity in a social network.  

To elaborate, in social networking sites like Facebook, users 
can create a personal profile and add other users as friends. For 
instance, a Facebook user X can add another Facebook user Y 
as a friend by sending Y a friend request. Upon Y’s acceptance 
of X’s friend request, X and Y can become mutual friends. In 
addition to exchanging messages among mutual friends, 
Facebook users can also join common-interest user groups and 
categorize their friends into different customized lists (e.g., 
classmates, co-workers). The number of (mutual) friends may 
vary from one Facebook user to another.  

Besides mutual friendship, another common linkage 
between users in social networks is followship (also known as 
follower-followee relationship or “following” pattern) [46], 
which captures the linkage that a social network user X follows 
another user Y. Let us elaborate by continuing with the 
aforementioned example on Facebook users. Although many of 
the Facebook users are linked to some other Facebook users via 
the mutual friendship (i.e., if a user X is a friend of another user 
Y, then user Y is also a friend of user X), there are also situations 
in which such a relationship is no longer mutual. To handle these 
situations, Facebook added the functionality of ‘subscribe’ in 
2011, which was relabelled as ‘follow’ in 2012. Specifically, a 
user can subscribe or follow public postings of some other 
Facebook users—usually, famous celebrities, public 
institutions, product and services, news media, and well-known 
bloggers—without the need of adding them as friends. A user X 
may follow other users who do not know user X. In this 
situation, the link between these social entities is no longer 
mutual (i.e., undirectional) but a directional “following” pattern 
from followers to followees. Note that this follower-followee 
relationship is common in many social networking sites such as 
Instagram and Twitter, in which a user X can ‘follow’ the 
Instagram and Twitter accounts of another user Y, but it is not 
necessary that user Y follows back the corresponding accounts 
of user X. Similarly, in YouTube, a user X can ‘subscribe’ to 
YouTube channels of another user Y, but again it is not 
necessary that user Y subscribes/follows back the corresponding 
channels of user X. 

To recap, mutual friendship—e.g., as captured by Facebook, 
where two social entities are mutual friends of each other—is 
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undirectional or bidirectional. In contrast, followship or 
follower-followee relationship—e.g., as captured by Instagram 
and/or Twitter, where a user (i.e., follower) follows another user 
(i.e., followee)—is directional from the follower to the followee. 
Note that these networks are usually very big but also very 
sparse. For example, as of July 20201 , although there were 
1.08 billion monthly active users (MAU) in Instagram, the 
average number of followers in a personal Instagram account2 is 
about 150. 

In general, data science [47, 48]—which applies data mining 
[49-53], machine learning [54], mathematical and statistical 
modelling [55], etc.—can discover implicit, previously 
unknown and potentially useful information and knowledge that 
are embedded in the big data. Specifically, social network 
analysis and mining can discovered discover useful information 
and knowledge from the aforementioned very big but very 
sparse social networks. 

With social network analysis and mining for the follower-
followee relationships, various recommendations can be made. 
For instance, when many friends of a user X follow some 
individual users (or groups of famous users), it is likely that 
user X may also be interested in following these individual users 
(or groups of famous users). This leads to a collection of most- 
followed users, which include Instagram accounts of some 
sports players, popular performers, public figures, and 
politicians. For instance, as of December 2020, the most-
followed Instagram accounts3 include those of (a) Portuguese 
soccer player Cristiano Ronaldo; (b) American musician & 
actress Ariana Grande; (c) American-Canadian actor & 
professional wrestler Dwayne Johnson (aka The Rock); 
(d) American TV personality, model & cosmetic business-
woman Kylie Jenner; and (e) American singer, actress & 
producer Selena Gomez. Then, upon the discovery of frequently 
followed groups (i.e., groups of famous users or social entities, 
who are followed by a significant number of common users), if 
any user X in the social network follows some members of these 
groups, then we could recommend other members of these 
groups to user X.  

To find these frequently followed groups, an effective way 
to represent very big but very sparse social network is needed. 
A compressed bitmap is a logical way as it has been applied to 
various application areas including compression of data [56, 57], 
image and video compression [58, 59], as well as sequence 
compressions (e.g., DNA sequences) [60]. Compressed data in 
these application areas help speed up the information retrieval 
of data in the areas. However, as they were not designed for 
social network analysis and mining, most of them cannot be 
easily adapted to compressing social networking sites. 

Regarding related works that focus on compressing social 
networks for frequent pattern mining and analysis, we [61] 
presented a social network mining strategy in the IEEE/ACM 
ASONAM 2016. The strategy applies the word-aligned hybrid 
(WAH) compression model to take advantage of the sparsity of 
“following” data. The idea behind this compression model is to 
divide the long bitmap into groups of 31 bits, then encode long-

                                                           
1 https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ 
2 https://www.hashtagsforlikes.co/blog/instagram-followers-how-many-does-the-average-person-have/ 
3 https://www.statista.com/statistics/421169/most-followers-instagram/ 

run of consecutive zero groups (i.e., groups without any “1”-bit) 
into a compressed word. If a “1”-bit appears in a group, then the 
group is stored without compression. 

Observed that a few “1”-bits are commonly following a 
long-run of consecutive zero groups of “0” for very sparse data 
set, we [62] presented in the IEEE/ACM ASONAM 2017 a 
solution to deal with these commonly observed situations. 
Specifically, our solution—namely, the improved position list 
word-aligned hybrid (IPLWAH) compression model—encodes 
both the long run of consecutive zero groups of “0” and its (at 
most k) “1”-bits in the succeeding group of 31 bits. 

Observed that there are situations in which a few “1”-bits 
appear in multiple consecutive groups (instead of a single group) 
succeeding a long run consecutive groups of “0”, we [63] 
presented in the IEEE/ACM ASONAM 2019 a solution with a 
flexible compression model. Specifically, our solution—
namely, the multi-line improved position list word-aligned 
hybrid (M-IPLWAH) compression model—encodes both the 
long run of consecutive zero groups of “0” and its (at most k) 
“1”-bits in multiple succeeding groups of 31 bits. Here, these 
succeeding groups must contain at least one “1”-bit. 

However, we also observed that there are situations in which 
the few “1”-bits appear in multiple groups succeeding a long run 
consecutive groups of “0”, but not all these succeeding groups  
contain at least one “1”-bit. For example, “1”-bits may appear in 
the first and the third groups—but not the second group—
succeeding a long run consecutive groups of “0”. Both IPLWAH 
and M-IPLWAH were not designed to handle the situations 
(with a gap between groups containing “1”-bits). Here, in the 
current IEEE/ACM ASONAM 2020 paper, we come up a 
solution to deal with the situations. Our key contributions of this 
paper include our design and development of this solution—
namely, a gapped-line improved position list word-aligned 
hybrid (G-IPLWAH) compressed bitwise representation of 
social networks. 

The remainder of this paper is organized as follows. The next 
section provides background and related works. Section III 
presents our compression model G-IPLWAH. Evaluation and 
conclusions are given in Sections IV and V, respectively. 

II. BACKGROUND AND RELATED WORKS 

A social network can be represented as a collection of bit 
vectors (i.e., bitmaps). Each vector corresponds to a follower, 
and represents the list of its followees. Specifically, a “1” in the 
i-th bit of the vector indicates that the follower follows the i-th 
followee in the social network. Recall from Section I that, as the 
social network can be very big, the vector can be long. 
Moreover, as the network can be very sparse, the number of “1”- 
bits in each vector can be small. 

A. Word-Aligned Hybrid (WAH) Compression 

When applying the word-aligned hybrid (WAH) 
compression model [61] for social network analysis and mining, 
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the bit vectors for followers are compressed as follows. Bits in 
each vector are divided into groups of 31 bits. Then, 

• If 31 bits in a group are all zeros, then the group is 
categorized as a zero-fill group. Consecutive zero-fill 
groups (of 31 zeros) are then combined and compressed 
into a zero-fill word, which is represented as a 32-bit 
word. Here,  

o the zero-fill word is prefixed with “10”, where 
the first bit “1” indicates that it is a fill word, 
and the second bit “0” indicates that it is a 0-
fill word; and  

o the suffix 30 bits indicate the number of 
consecutive groups of 31 zeros. 

• If 31 bits in a group contain a mixture of “0”- and “1”-
bits, then these mixture bits are put into a literal word. 
Specifically, a literal word is also represented as a 32-bit 
word, which is 

o prefixed with “0” to indicate that its identity 
(i.e., word prefixed with “0” is a literal word); 
and 

o the suffix 31 bits capture the mixture of “0”- 
and “1”-bits. 

For illustrative purposes, let us consider a social network, in 
which Kees follows Aart (user #31728), Brechtje (user #63344), 
Cas (user #63349), Danique (user #63354), Evert (user #94611), 
Famke (user #94632), Gerrit (user #94653), Hannie (user 
#126231), Ignaas (user #126272). 

Example 1. The original uncompressed bit vector for Kees 
contains “1”-bits at positions 31728 (for Aart), 63344 (for 
Brechtje), 63349 (for Cas), 63354 (for Danique), 94611 (for 
Evert), 94632 (for Famke), 94653 (for Gerrit), 126231 (for 
Hannie) and 126272 (for Ignaas). With at least 125532 bits, this 
vector requires 3,946 words (of 32 bits), for a total of 
126,272 bits to capture all followees of a single follower Kees. 
This number is then multiplied by the number of followers to 
capture followees of all followers in the social network. 

Example 2. Continue with Example 1. When applying the 
WAH compressed model, the vector for Kees can be 
compressed into a bitmap consisting of a sequence of 12 (zero-
fill and literal) 32-bit words: 

• The first 32-bit word in the sequence is a zero-fill word 
10 00 0000 0000 0000 0000 0011 1111 1111, where 
(a) the prefix “10” indicates that it is a zero-fill word and 
(b) the suffix 11 1111 1111 (2) = 1023 (10) indicates 
1023 groups of 31 consecutive zeros. 

• The second 32-bit word in the sequence is a literal word 
0 00000 00000 00001 00000 00000 00000 0, where 
(a) the prefix “0” indicates that it is a literal word and 
(b) the “1”-bit is in the 15th position of this word to 
represent the followee Aart (i.e., user#31728) because of 
the presence of “1”-bit in the 1023x31 + 15 = 31728th 
position in the original bit vector. 

• The third 32-bit word in the sequence is a zero-fill word 
10 00 0000 0000 0000 0000 0011 1111 1011, where the 
suffix indicates 11 1111 1011 (2) = 1019 (10) groups of 
31 consecutive zeros. 

• The fourth 32-bit word in the sequence is a literal word 
0 00000 00000 10000 10000 10000 00000 0, where the 
three “1”-bits are in the 11th, 16th and 21st positions of 
this word. The “1”-bit in the 11th position represents the 
followee Brechtje (user #63344) because of the presence 
of “1”-bit in the (1023+1+1019)x31 + 11 = 63344th, 
position in the original bit vector. Similarly, the “1”-bits 
in the 16th and 21st positions of this word represent the 
followees Cas (user #63349) and Danique (user #63354) 
because of the presence of “1”-bits in the 63349th and 
63354th positions in the original bit vector. 

• The fifth 32-bit word in the sequence is a zero-fill word 
10 00 0000 0000 0000 0000 0011 1110 1111, where the 
suffix indicates 11 1110 1111 (2) = 1007 (10) groups of 
31 consecutive zeros. 

• The sixth 32-bit word in the sequence is a literal word 
0 00000 00000 00000 00000 00000 00001 0, where the 
“1”-bit is in the 30th position of this word to represent 
the followee Evert (user #94611) because of the presence 
of “1”-bits in the (1023+1+1019+1+1007)x31 + 30 = 
94611th positions in the original bit vector.  

• The seventh 32-bit word in the sequence is a literal word 
0 00000 00000 00000 00001 00000 00000 0, where the 
“1”-bit is in the 20th position of this word to represent 
the followee Famke (user #94632) because of the 
presence of “1”-bits in the (1023+1+1019+1+1007+1) x 

31 + 20 = 94632nd position in the original bit vector. 

• The eighth 32-bit word in the sequence is a literal word 
0 00000 00001 00000 00000 00000 00000 0, where the 
“1”-bit is in the 10th position of this word to represent 
the followee Gerrit (user #94653) because of the 
presence of “1”-bits in the (1023+1+1019+1+1007+2) x 

31 + 10 = 94653rd position in the original bit vector. 

• The ninth 32-bit word in the sequence is a zero-fill word 
10 00 0000 0000 0000 0000 0011 1111 1001, where the 
suffix indicates 11 1111 1001 (2) = 1017 (10) groups of 
31 consecutive zeros. 

• The 10th 32-bit word in the sequence is a literal word 
0 00000 00000 00000 00000 00001 00000 0, where the 
“1”-bit is in the 25th position of this word to represent 
the followee Hannie (user #126231) because of the 
presence of “1”-bits in the (1023+1+1019+1+1007+3 
+1017)x31 + 30 = 126231st positions in the original bit 
vector.  

• The 11th 32-bit word in the sequence is a zero-fill word 
10 00 0000 0000 0000 0000 0000 0000 0001, where the 
suffix indicates 1 (2) = 1 (10) group of 31 consecutive 
zeros. 

• Finally, the 12th 32-bit word in the sequence is a literal 
word 0 00000 00000 00000 00000 00001 00000 0, 
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where the “1”-bit is in the 9th position of this word to 
represent the followee Ignaas (user #126272) because of 
the presence of “1”-bits in the (1023+1+1019+1+1007+3 
+1017+1+1)x31 + 9 = 126272nd positions in the original 
bit vector. 

In other words, this WAH compressed bitmap only requires 
12x32 = 384 bits (cf. 126,272 bits for the original uncompressed 
bit vector) to capture all followees of the follower Kees. 

B. Improved Position List Word-Aligned Hybrid (IPLWAH) 

Compression 

Our improved position word-aligned hybrid IPLWAH(k) 
compression model [62] improves WAH for social network 
analysis and mining by combining: 

• a zero-fill word (i.e., long run of consecutive zero groups 
of “0”), with  

• its succeeding literal word containing at most k “1”-bits.  

The combined word is still (a) represented as a 32-bit word and 
(b) having prefix “10” to indicate its identity (i.e., a compressed 
zero-fill word). However, it uses at most k collections of 5 bits 
(e.g., 3rd-7th bits, 8th-12th bits, ...) to indicate the positions of 
at most k “1”-bits in a single group of 31 bits succeeding the long 
run of consecutive groups of 31 zeros. The number of these 
consecutive groups is indicated by the suffix 30–5k bits. 
Practically, 1 ≤ k ≤ 5 for our IPLWAH(k) compression model. 
To summarize, a zero-fill word in IPLWAH(k)—for 1 ≤ k ≤ 5 
practically—is represented as a 32 bit word with: 

• prefix “10” to indicate its identity (i.e., a compressed 
zero-fill word); 

• next k collections of 5 bits—in the 3rd bit to the (5k+2)-
th bit (e.g., 3rd-7th bits, 8th-12th bits, 13th-17th bits, 
...)—indicate the positions of at most k “1”-bits in a 
single group of 31 bits succeeding the long run of 
consecutive groups of 31 zeros; and 

• suffix 30–5k bits (e.g., suffix 25 bits, 20 bits, 15 bits, ...) 
to indicate the number of these of consecutive groups of 
31 zeros. 

Example 3. Continue with Example 2. With our IPLWAH(1) 
compressed model, the vector for Kees can be further 
compressed into a bitmap consisting of a sequence of eight 
(zero-fill and literal) 32-bit words. Most of the words in this 
IPLWAH(1) compressed bitmap are identical to those in the 
WAH compressed bitmap in Example 2, except the following: 

• The first two 32-bit words in the WAH bitmap are 
compressed to become the first 32-bit word in this 
IPLWAH(1) sequence, which is a compressed zero-fill 
word 10 01111 0 0000 0000 0000 0011 1111 1111, 
where (a) the prefix “10” indicates that it is a zero-fill 
word, (b) the suffix 11 1111 1111 (2) = 1023 (10) indicates 
1023 groups of 31 consecutive zeros are followed by 
(c) a “1”-bit at position 1111 (2) = 15 (10) of the succeeding 
word representing Aart. 

• The fifth and sixth 32-bit words in the WAH bitmap are 
compressed to become the fourth 32-bit word in this 

IPLWAH(1) sequence, which is a compressed zero-fill 
word 10 11110 0 0000 0000 0000 0011 1110 1111, 
where (a) the suffix indicates 11 1110 1111 (2) = 
1007 (10) groups of 31 consecutive zeros are followed by 
(b) a “1”-bit at position 11110 (2) = 30 (10) of the 
succeeding word representing Evert. 

• The ninth and tenth 32-bit words in the WAH bitmap are 
compressed to become the seventh 32-bit word in this 
IPLWAH(1) sequence, which is a compressed zero-fill 
word 10 11001 0 0000 0000 0000 0011 1111 1001, 
where (a) the suffix indicates 11 1111 1001 (2) = 1017 (10) 
groups of 31 consecutive zeros are followed by (b) a “1”-
bit at position 11001 (2) = 25 (10) of the succeeding word 
representing Hannie. 

• Finally, the 11th and 12th 32-bit words in the WAH 
bitmap are compressed to become the eighth 32-bit word 
in this IPLWAH(1) sequence, which is a compressed 
word 10 01001 0 0000 0000 0000 0000 0000 0001, 
where (a) the suffix indicates 1 (2) = 1 (10) group of 
31 consecutive zeros is followed by (b) a “1”-bit at 
position 1001 (2) = 9 (10) of the succeeding word 
representing Ignaas. 

In other words, this IPLWAH(1) compressed bitmap only 
requires 8x32 = 256 bits (cf. 384 bits for the WAH compressed 
bitmap, and 126,272 bits for the original uncompressed bit 
vector) to capture all followees of the follower Kees. 

Example 4. Continue with Example 3. Further compression is 
possible for higher values for k in our IPLWAH(k) compressed 
model. As an example, when k=3, the vector for Kees can be 
compressed into a bitmap consisting of a sequence of seven 
(zero-fill and literal) 32-bit words. Most of the words in this 
IPLWAH(3) compressed bitmap are identical to those in the 
IPLWAH(1) compressed bitmap in Example 3, except that: 

• the second and third 32-bit words in the IPLWAH(1) 
bitmap are compressed to become the second 32-bit 
word in this IPLWAH(3), which is a compressed zero-
fill word 10 01011 10000 10101 000 0011 1111 1111, 
where (a) the prefix “10” indicates that it is a zero-fill 
word, (b) the suffix 11 1111 1111 (2) = 1023 (10) indicates 
1023 groups of 31 consecutive zeros are followed by 
(c) three “1”-bits at positions 1011 (2) = 11 (10), 10000 (2) 
= 16 (10) and 10101 (2) = 21 (10) of the single succeeding 
word representing Brechtje, Cas and Danique.  

In other words, this IPLWAH(3) compressed bitmap only 
requires 7x32 = 224 bits (cf. 256 bits for the IPLWAH(1) 
compressed bitmap, 384 bits for the WAH compressed bitmap, 
and 126,272 bits for the original uncompressed bit vector) to 
capture all followees of the follower Kees. 

C. Multi-line Improved Position List Word-Aligned Hybrid 

(M-IPLWAH) Compression 

Our multi-line improved position word-aligned hybrid  
M-IPLWAH(k) compression model [63] further improves 
IPLWAH(k) for social network analysis and mining by 
combining: 
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• a zero-fill word (i.e., long run of consecutive zero groups 
of “0”), with  

• its multiple consecutive succeeding literal words 
containing at most k “1”-bits (with at least one “1”-bit in 
each literal word). 

A key difference between IPLWAH(k) and this M-IPLWAH(k) 
compression models is that, the former only combines a single 
literal word (containing at most k “1”-bits) succeeding the zero-
fill word, whereas the latter can combine multiple literal words 
(with at most k ‘1”-bits distributed among these consecutive 
literal words with at least one “1”-bit in each literal word) 
succeeding the zero-fill word. 

With our M-IPLWAH(k) compression model, the combined 
word is still (a) represented as a 32-bit word and (b) having 
prefix “10” to indicate its identity (i.e., a compressed zero-fill 
word). It uses at most k collections of 5 bits (e.g., 3rd-7th bits, 
8th-12th bits, ...) to indicate the positions of at most k “1”-bits, 
which can be distributed among multiple consecutive groups of 
31 bits succeeding the long run of consecutive groups of 
31 zeros. The number of these consecutive groups is indicated 
by the suffix 31–6k bits. Moreover, (k–1) bits are used for 
indicating whether the current collection of 5 bits is on the same 
“line” (i.e., is in the same group) as the previous ones. 
Practically, 1 ≤ k ≤ 4 for our M-IPLWAH(k) compression 
model. To summarize, a zero-fill word in M-IPLWAH(k)—for 
1 ≤ k ≤ 4 practically—is represented as a 32 bit word with: 

• prefix “10” to indicate its identity (i.e., a compressed 
zero-fill word); 

• next (k–1) bits—from the 3rd bit to the (k+1)-th bit (e.g., 
3rd, 4th, 5th bits)—serve as flags to indicate whether the 
next “1”-bit is on the same “line” (i.e., the same literal 
word) as the current one (e.g., whether the second “1”-
bit is on the same “line” as the first one, whether the third 
“1”-bit is on the same “line” as the second one, ...). 
Specifically:  

o a flag with a value of “1” indicates the next 
“1”-bit is on the next “line” succeeding the 
current one, whereas  

o a flag with a value of “0” indicates the next 
“1”-bit is on the same “line” as the current 
one; 

• next k collections of 5 bits—in the (k+2)-th bit to the  
(6k+1)-th bit (e.g., 3rd-7th bits for k=1; 4th-8th & 9th-
13th bits for k=2; 5th-9th, 10th-14th & 15th-19th bits for 
k=3; ...)—indicate the positions of at most k “1”-bits 
succeeding the long run of consecutive groups of 
31 zeros; and 

• suffix 31–6k bits (e.g., suffix 25 bits, 19 bits, 13 bits, ...) 
to indicate the number of these of consecutive groups of 
31 zeros. 

Observation 1. Observed from the above specification, when 
k=1, both IPLWAH(1) and M-PLWAH(1) produce the same 
compressed bitmap. However, further compression is observed 
for higher values of k (i.e., when k > 1). 

Example 5. Continue with Example 4. With our M-IPLWAH(3) 
compressed model, the vector for Kees can be further 
compressed into a bitmap consisting of a sequence of five (zero-
fill and literal) 32-bit words. Most of the words in this  
M-IPLWAH(3) compressed bitmap are identical or similar to 
those in the IPLWAH(3) compressed bitmap in Example 4. 
Specifically: 

• the first, fourth and fifth words in this M-IPLWAH(3) 
are identical to the corresponding words in IPLWAH: 

o the first, seventh and eighth words in the 
IPLWAH(1) compressed bitmap; or,  

o the first, sixth and seventh words in the 
IPLWAH(3) compressed bitmap. 

It is because these words capture a long run of 
consecutive groups of 31 zeros followed by only a single 
“1”-bits (so that no flag bits need to be added):  

• The second 32-bit word is similar—but not identical—to 
that of IPLWAH(3) due to the addition of the flag bits: 
10 0 0 01011 10000 10101 0 0011 1111 1111, where 
(a) the suffix indicates 11 1111 1111 (2) = 1023 (10) groups 
of 31 consecutive zeros are followed by (b) a “1”-bit at 
position 1011 (2) = 11 (10) of a succeeding word 
representing Brechtje. Then, (c) a “0”-bit flag in the 3rd 
position indicates that (d) the next “1”-bit at position 
10000 (2) = 16 (10) representing Cas is in the same word  
representing Brechtje. Furthermore, (e) another “0”-bit 
flag in the 4th position indicates that (f) the next “1”-bit 
at position 10101 (2) = 21 (10) representing Danique is in 
the same word representing Cas. In other words, all three 
followees are in the same word. 

• The third 32-bit word in this M-IPLWAH(3) compressed 
bitmap is different because it is a compression of the 
third, fourth and fifth words in the IPLWAH(3):  
10 1 1 11110 10100 01010 0 0011 1111 1111, where 
(a) the prefix “10” indicates that it is a zero-fill word, 
(b) the suffix 11 1110 1111 (2) = 1007 (10) indicates 1007 
groups of 31 consecutive zeros are followed by (c) a “1”-
bit at position 11110 (2) = 30 (10) of a succeeding word 
representing Evert. Then, (d) a “1”-bit flag in the 3rd 
position indicates that (e) the next “1”-bit at position 
10100 (2) = 20 (10) representing Famke is in a word 
succeeding the word representing Evert. Furthermore, 
(f) another “1”-bit flag in the 4th position indicates that 
(g) the next “1”-bit at position 1010 (2) = 10 (10) 
representing Gerrit is in a word succeeding the word 
representing Famke. 

In other words, this M-IPLWAH(3) compressed bitmap only 
requires 5x32 = 160 bits (cf. 224 bits for the IPLWAH(3) 
compressed bitmap, 256 bits for the IPLWAH(1) compressed 
bitmap, 384 bits for the WAH compressed bitmap, and 
126,272 bits for the original uncompressed bit vector) to capture 
all followees of the follower Kees. 
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III. OUR GAPPED-LINE IMPROVED POSITION LIST WORD-

ALIGNED HYBRID (G-IPLWAH) COMPRESSION 

Observed from our illustrative social network that the 
situation for three groups of followees—namely, (a) {Brechtje, 
Cas, Danique}, (b) {Evert, Famke, Gerrit} and (c) {Hannie, 
Ignaas}—are similar but not identical. Specifically, observed 
from Example 2 that the first group of followees are happened 
to be on the same literal word in the WAH compressed bitmap 
due to the very close proximity of their user ID numbers. 
Because of that, these three followees can be combined with 
their preceding run of consecutive groups of 31 zeros in the 
IPLWAH(3) compressed bitmap, and thus subsequent M-
IPLWAH(k) compressed bitmap. In contrast, the second group 
of followees are not on the same literal word but on three 
consecutive literal words (with each word containing one 
followee). As such, although they are not compressed into a 
single word in the IPLWAH(k) compressed bitmap, they can be 
compressed into a single word. More precisely, they are 
compressed into a single word with their preceding run of 
consecutive groups of 31 zeros in the M-IPLWAH(3) 
compressed bitmap. As for the third group of followees, they are 
not even on two consecutive literal words. There is a gap of a 
single zero-fill word with only one group of 31 zeros in between. 
Consequently, they are not compressed into a words in the M-
IPLWAH(k) compressed bitmap. So, a logical question is: Can 
the third group of followees be compressed? 

Here, we response with a “yes” answer by designing a 
gapped-line improved position list word-aligned hybrid  
(G-IPLWAH) compression model. In this section, we describe 
our G-IPLWAH(k, g) compression model for social network 
analysis and mining. The idea is to combine: 

• a zero-fill word (i.e., long run of consecutive zero groups 
of “0”), with  

• its multiple consecutive succeeding (literal or zero-fill) 
words containing at most k “1”-bits (with at least one 
“1”-bit in each literal word) and may contain a small gap 
among these words. 

A key difference between M-IPLWAH(k) and this  
G-IPLWAH(k, g) compression models is that, the former only 
combines consecutive multiple literal words (containing at most 
k “1”-bits) succeeding the zero-fill word, whereas the latter can 
combine consecutive multiple (literal or zero-fill) words (with at 
most k ‘1”-bits distributed among these literal words with at least 
one “1”-bit in each literal word)—and may contain gaps— 
succeeding the zero-fill word. For instance, G-IPLWAH(k, g) is 
expected to handle situations like that for followees Hannie and 
Ignaas, in which the user ID numbers between the two is more 
than 31, thus creating a gap with a zero-fill word consisting of 
only one group of consecutive zeros. 

With our G-IPLWAH(k, g) compression model, the 
combined zero-fill word is still (a) represented as a 32-bit word 
and (b) having prefix “10” to indicate its identity (i.e., a zero-fill 
word). It uses the first 5 bits to indicate the position of the first 
“1”-bits succeeding the long run of consecutive groups of 
31 zeros. It uses (5+g) bits to indicate the positions of the 
subsequent “1”-bits (for a total of at most k “1”-bits), and g 
indicates the additional span of these (literal or zero-fill) words 

to be combined into a single compressed zero-fill word. To 
elaborate, as we use (5+g) bits to represent the positions of “1”-
bits, they can beyond the usual positions 1 to 31 into positions 1 
to 2(5+g)–1. This allows us to combine multiple “lines” even with 
small gaps in between. Here, the flag bits from M-IPLWAH(k) 
is no longer needed, and thus saving (k–1) bits. As such, te 
number of the consecutive groups of 31 zeros is indicated by the 
suffix 25–(k–1)(5+g) bits. Practically, (1 ≤ k ≤ 3) and (0 ≤ g ≤ 2) 
for our G-IPLWAH(k, g) compression model. To summarize, a 
zero-fill word in G-IPLWAH(k, g)—for (1 ≤ k ≤ 3) and (0 ≤ g 
≤ 2) practically—is represented as a 32 bit word with: 

• prefix “10” to indicate its identity (i.e., a zero-fill word); 

• next 5 bits (i.e., 3rd-7th bits) indicate the positions of the 
first “1”-bits in a single group of 31 bits succeeding the 
long run of consecutive groups of 31 zeros 

• next (k–1) collections of (5+g) bits—in the (k+7)-th bit 
to the (7+(k–1)(5+g))-th bit (e.g., 8th-21st bits when k=3 
and g=2)—indicate the positions of at most (k–1) “1”-
bits succeeding the long run of consecutive groups of 
31 zeros; and 

• suffix 25–(k–1)(5+g) bits (e.g., suffix 11 bits when k=3 
and g=2) to indicate the number of these of consecutive 
groups of 31 zeros. 

Observation 2. Observed from the above specification, when 
g=0,  both IPLWAH(k) and G-PLWAH(k, 0) produce the same 
compressed bitmap. However, further compression is observed 
for higher values of g (i.e., when g > 0). 

Example 6. Continue with Example 4. With our  
G-IPLWAH(3, 2) compressed model, the vector for Kees can be 
further compressed into a bitmap consisting of a sequence of 
four (zero-fill and literal) 32-bit words. Most of the words in this  
G-IPLWAH(3, 2) compressed bitmap are identical or similar to 
those in the IPLWAH(3) compressed bitmap in Example 4. 
Specifically: 

• The first word in this G-IPLWAH(3, 2) is identical to the 
first word in IPLWAH(k). 

• The second 32-bit word in this G-IPLWAH(3, 2) is 
similar—but not identical—to that of IPLWAH(3) due to 
bit size changes for indicating the positions of “1”-bits:  
10 01011 0010000 0010101 011 1111 1111, where 
(a) the suffix (i.e., 11 bits from the 22nd-32nd bits) 
indicates 11 1111 1111 (2) = 1023 (10) groups of 
31 consecutive zeros are followed by (b) three “1”-bits at 
positions 1011 (2) = 11 (10), 10000 (2) = 16 (10) and 10101 (2) 
= 21 (10) of a succeeding word representing Brechtje, Cas 
and Danique. Here, the position of the first “1”-bit is 
captured by 5 bits (i.e., 3rd-7th bits), whereas those of the 
second and third “1”-bits are captured by 5+g = 7 bits 
(i.e., 8th-14th and 15th-21st bits). 

• The third 32-bit word in this G-IPLWAH(3, 2) is 
different because it is a compression of the third, fourth 
and fifth words in the IPLWAH(3) compressed bitmap: 
10 11110 0110011 1001000 011 1111 1111, where 
(a) the suffix indicates 11 1110 1111 (2) = 1007 (10) groups 
of 31 consecutive zeros are followed by (b) three “1”-
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bits at positions 11110 (2) = 30 (10), 110011 (2) = 51 (10) and 
1001000 (2) = 72 (10) of an “extended” succeeding word 
representing Evert, Famke and Gerrit. Here, the position 
of the first “1”-bit is captured by 5 bits (i.e., 3rd-7th bits). 
Those of the second and third “1”-bits are captured by 
5+g = 7 bits (i.e., 8th-14th and 15th-21st bits), which 
allow us to have positions beyond the usual position 31 
(up to position 127), and thus enable us to capture these 
three followees spanning over multiple (precisely, up 
to 4) “lines” (cf. Brechtje, Cas and Danique who span on 
the same “line” or the same literal word). 

• The fourth 32-bit word in this G-IPLWAH(3, 2) 
sequence is also different because it is a compression of 
the sixth and seventh words in the IPLWAH(3): 
10 11001 0 0000 0000 0000 0011 1111 1001, where 
(a) the suffix indicates 11 1111 1001 (2) = 1017 (10) groups 
of 31 consecutive zeros are followed by (b) two “1”-bits 
at positions 11001 (2) = 25 (10) and 1101011 (2) = 107 (10) 

of an “extended” succeeding word representing Hannie 
and Ignaas. Here, the position of the first “1”-bit is 
captured by 5 bits (i.e., 3rd-7th bits). That of the second 
“1”-bit is captured by 5+g = 7 bits (i.e., 8th-14th bits), 
which enable us to capture these two followees spanning 
over three “lines” with gaps (i.e., the “1”-bit for Hannie 
is in one “line”, that for Ignaas is in the third “line”, and 
no “1”-bit in the second “line” between them. This is 
quite different from the “1”-bits for Evert, Famke and 
Gerrit who span on three consecutive “line” or literal 
word with at least one “1”-bit in each “line”). 

In other words, this G-IPLWAH(3, 2) compressed bitmap only 
requires 4x32 = 128 bits (cf. 160 bits for M-IPLWAH(3) 
compressed bitmap, 224 bits for the IPLWAH(3) compressed 
bitmap, 256 bits for the IPLWAH(1) compressed bitmap, 384 
bits for the WAH compressed bitmap, and 126,272 bits for the 
original uncompressed bit vector) to capture all followees of the 
follower Kees. 

IV. EVALUATION 

In terms of functionality, the WAH compression model aims 
to compress consecutive groups of 31 zeros. The IPLWAH(k) 
model combines a few (say, up to k=5 practically) “1”-bits 
appear on the same “line” (i.e., literal word) succeeding run of 
consecutive groups of 31 zeros. The M-PLWAH(k) model 
combines a few (say, up to k=4 practically) “1”-bits appear on 
consecutive “lines” (without gaps) succeeding run of 
consecutive groups of 31 zeros. The G-PLWAH(k, g) model 
further combines a few (say, up to k=3 practically) “1”-bits 
appear on multiple “lines” (with may have gaps) succeeding run 
of consecutive groups of 31 zeros. See Table I. 

In terms of memory and runtime, evaluation on datasets from 
SNAP Stanford Large Network Collection (e.g., ego-Gplus, 
ego-Twitter) show that G-PLWAH(k, g) further compresses the 
data, and thus requires less space, than related works. 
Consequently, evaluation results also show a reduction in 
runtime for social network analysis and mining (e.g., mining 
groups of frequently followed social entities/followees). 

 

TABLE I.  FUNCTIONALITY OF COMPRESSION MODELS 

Handle “1”-bits 
following 0s 

WAH IPLWAH M-IPLWAH G-IPLWAH 

on same “line” x    

over multi-
lines w/o gaps 

x x   

over multi-
lines w/ gaps 

x x x  

CONCLUSIONS 

In this paper, we presented a gapped gapped-line improved 
position list word-aligned hybrid (G-IPLWAH) compression for 
social network analysis and mining for very sparse but big social 
data. The G-IPLWAH(k, g) extends the number of bits to 
represent positions of “1”-bits beyond the usual 31 bits. This 
allows us to capture “1”-bits spanning over multiple “lines” (i.e., 
literal words) even with gaps. As a logical continuation along 
with the directions on compression for sparse social networks 
over the past few IEEE/ACM ASONAM, this compression 
model is more flexible and further compresses social data than 
previous ones. As ongoing and future work, we explore further 
compression for effective social network analysis and mining.. 
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