
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

IEEE/ACM ASONAM 2020, December 7-10, 2020
978-1-7281-1056-1/20/$31.00 ©2020 IEEE

Compression for Very Sparse Big Social Data

Carson K. Leung1, (), Yibin Zhang1, 2, Fan Jiang3
1 Department of Computer Science, University of Manitoba

Winnipeg, MB, Canada
2 Department of Computer Science, University of Toronto

Toronto, ON, Canada
3 Department of Computer Science, University of Northern British Columbia (UNBC)

Prince George, BC, Canada
() Email: kleung@cs.umanitoba.ca

Abstract—Technological advancements in the current era of

big data have led to rapid generation and collection of very large

amounts of valuable data from a wide variety of rich data sources.

As rich data sources, social networks consist of social entities that

are linked by some social relationships (e.g., kinship,

colleagueship, co-authorship, friendship, followship). Usually,

these networks are very big but also very sparse. Embedded in the

very sparse but very big networks are implicit, previously

unknown and potentially useful information and knowledge that

can be discovered by social network analysis and mining. In this

paper, we aim to discover interesting social relationships from

very sparse but very big social network data. Due to the sparsity

of the data, we effectively compress bitmaps representing social

entities in the data, from which useful information can be mined

and interesting knowledge can be discovered. Evaluation results

show the effectiveness of our compression scheme for very sparse

but very big social network data.

Keywords—social network analysis, social network mining, data

mining, big data science, big data analytics, compression

I. INTRODUCTION

Technological advancements in the current era of big data
[1-6] have led to rapid generation and collection of very large
amounts of valuable data from a wide variety of rich data
sources. These big data can be of different level veracity, with
some precise data and some imprecise and uncertain data [7-9].
Examples include data generated or collected from:

• bio-engineering, bio-informatics, and bio-medical
applications (e.g., omic data like genomic data [10-13]);

• e-commerce activities [14, 15],

• entertainment (e.g., movies) [16], games [17, 18], and
music [19-21];

• financial and stock markets [22-24];

• healthcare sector [25] (e.g., disease reports [26, 27],
epidemiological data and statistics [28-33]);

• traffic and road conditions [34-39].

In addition, as one of the aforementioned rich data sources,
social networks [40-43] (e.g., co-authorship networks [44, 45])
consist of social entities that are linked by some social
relationships. For instance, a social entity can be the next-of-kin,

colleague, co-author, mutual friend, follower, and/or followee of
another social entity in a social network.

To elaborate, in social networking sites like Facebook, users
can create a personal profile and add other users as friends. For
instance, a Facebook user X can add another Facebook user Y
as a friend by sending Y a friend request. Upon Y’s acceptance
of X’s friend request, X and Y can become mutual friends. In
addition to exchanging messages among mutual friends,
Facebook users can also join common-interest user groups and
categorize their friends into different customized lists (e.g.,
classmates, co-workers). The number of (mutual) friends may
vary from one Facebook user to another.

Besides mutual friendship, another common linkage
between users in social networks is followship (also known as
follower-followee relationship or “following” pattern) [46],
which captures the linkage that a social network user X follows
another user Y. Let us elaborate by continuing with the
aforementioned example on Facebook users. Although many of
the Facebook users are linked to some other Facebook users via
the mutual friendship (i.e., if a user X is a friend of another user
Y, then user Y is also a friend of user X), there are also situations
in which such a relationship is no longer mutual. To handle these
situations, Facebook added the functionality of ‘subscribe’ in
2011, which was relabelled as ‘follow’ in 2012. Specifically, a
user can subscribe or follow public postings of some other
Facebook users—usually, famous celebrities, public
institutions, product and services, news media, and well-known
bloggers—without the need of adding them as friends. A user X
may follow other users who do not know user X. In this
situation, the link between these social entities is no longer
mutual (i.e., undirectional) but a directional “following” pattern
from followers to followees. Note that this follower-followee
relationship is common in many social networking sites such as
Instagram and Twitter, in which a user X can ‘follow’ the
Instagram and Twitter accounts of another user Y, but it is not
necessary that user Y follows back the corresponding accounts
of user X. Similarly, in YouTube, a user X can ‘subscribe’ to
YouTube channels of another user Y, but again it is not
necessary that user Y subscribes/follows back the corresponding
channels of user X.

To recap, mutual friendship—e.g., as captured by Facebook,
where two social entities are mutual friends of each other—is

659

undirectional or bidirectional. In contrast, followship or
follower-followee relationship—e.g., as captured by Instagram
and/or Twitter, where a user (i.e., follower) follows another user
(i.e., followee)—is directional from the follower to the followee.
Note that these networks are usually very big but also very
sparse. For example, as of July 20201 , although there were
1.08 billion monthly active users (MAU) in Instagram, the
average number of followers in a personal Instagram account2 is
about 150.

In general, data science [47, 48]—which applies data mining
[49-53], machine learning [54], mathematical and statistical
modelling [55], etc.—can discover implicit, previously
unknown and potentially useful information and knowledge that
are embedded in the big data. Specifically, social network
analysis and mining can discovered discover useful information
and knowledge from the aforementioned very big but very
sparse social networks.

With social network analysis and mining for the follower-
followee relationships, various recommendations can be made.
For instance, when many friends of a user X follow some
individual users (or groups of famous users), it is likely that
user X may also be interested in following these individual users
(or groups of famous users). This leads to a collection of most-
followed users, which include Instagram accounts of some
sports players, popular performers, public figures, and
politicians. For instance, as of December 2020, the most-
followed Instagram accounts3 include those of (a) Portuguese
soccer player Cristiano Ronaldo; (b) American musician &
actress Ariana Grande; (c) American-Canadian actor &
professional wrestler Dwayne Johnson (aka The Rock);
(d) American TV personality, model & cosmetic business-
woman Kylie Jenner; and (e) American singer, actress &
producer Selena Gomez. Then, upon the discovery of frequently
followed groups (i.e., groups of famous users or social entities,
who are followed by a significant number of common users), if
any user X in the social network follows some members of these
groups, then we could recommend other members of these
groups to user X.

To find these frequently followed groups, an effective way
to represent very big but very sparse social network is needed.
A compressed bitmap is a logical way as it has been applied to
various application areas including compression of data [56, 57],
image and video compression [58, 59], as well as sequence
compressions (e.g., DNA sequences) [60]. Compressed data in
these application areas help speed up the information retrieval
of data in the areas. However, as they were not designed for
social network analysis and mining, most of them cannot be
easily adapted to compressing social networking sites.

Regarding related works that focus on compressing social
networks for frequent pattern mining and analysis, we [61]
presented a social network mining strategy in the IEEE/ACM
ASONAM 2016. The strategy applies the word-aligned hybrid
(WAH) compression model to take advantage of the sparsity of
“following” data. The idea behind this compression model is to
divide the long bitmap into groups of 31 bits, then encode long-

1 https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
2 https://www.hashtagsforlikes.co/blog/instagram-followers-how-many-does-the-average-person-have/
3 https://www.statista.com/statistics/421169/most-followers-instagram/

run of consecutive zero groups (i.e., groups without any “1”-bit)
into a compressed word. If a “1”-bit appears in a group, then the
group is stored without compression.

Observed that a few “1”-bits are commonly following a
long-run of consecutive zero groups of “0” for very sparse data
set, we [62] presented in the IEEE/ACM ASONAM 2017 a
solution to deal with these commonly observed situations.
Specifically, our solution—namely, the improved position list
word-aligned hybrid (IPLWAH) compression model—encodes
both the long run of consecutive zero groups of “0” and its (at
most k) “1”-bits in the succeeding group of 31 bits.

Observed that there are situations in which a few “1”-bits
appear in multiple consecutive groups (instead of a single group)
succeeding a long run consecutive groups of “0”, we [63]
presented in the IEEE/ACM ASONAM 2019 a solution with a
flexible compression model. Specifically, our solution—
namely, the multi-line improved position list word-aligned
hybrid (M-IPLWAH) compression model—encodes both the
long run of consecutive zero groups of “0” and its (at most k)
“1”-bits in multiple succeeding groups of 31 bits. Here, these
succeeding groups must contain at least one “1”-bit.

However, we also observed that there are situations in which
the few “1”-bits appear in multiple groups succeeding a long run
consecutive groups of “0”, but not all these succeeding groups
contain at least one “1”-bit. For example, “1”-bits may appear in
the first and the third groups—but not the second group—
succeeding a long run consecutive groups of “0”. Both IPLWAH
and M-IPLWAH were not designed to handle the situations
(with a gap between groups containing “1”-bits). Here, in the
current IEEE/ACM ASONAM 2020 paper, we come up a
solution to deal with the situations. Our key contributions of this
paper include our design and development of this solution—
namely, a gapped-line improved position list word-aligned
hybrid (G-IPLWAH) compressed bitwise representation of
social networks.

The remainder of this paper is organized as follows. The next
section provides background and related works. Section III
presents our compression model G-IPLWAH. Evaluation and
conclusions are given in Sections IV and V, respectively.

II. BACKGROUND AND RELATED WORKS

A social network can be represented as a collection of bit
vectors (i.e., bitmaps). Each vector corresponds to a follower,
and represents the list of its followees. Specifically, a “1” in the
i-th bit of the vector indicates that the follower follows the i-th
followee in the social network. Recall from Section I that, as the
social network can be very big, the vector can be long.
Moreover, as the network can be very sparse, the number of “1”-
bits in each vector can be small.

A. Word-Aligned Hybrid (WAH) Compression

When applying the word-aligned hybrid (WAH)
compression model [61] for social network analysis and mining,

660

the bit vectors for followers are compressed as follows. Bits in
each vector are divided into groups of 31 bits. Then,

• If 31 bits in a group are all zeros, then the group is
categorized as a zero-fill group. Consecutive zero-fill
groups (of 31 zeros) are then combined and compressed
into a zero-fill word, which is represented as a 32-bit
word. Here,

o the zero-fill word is prefixed with “10”, where
the first bit “1” indicates that it is a fill word,
and the second bit “0” indicates that it is a 0-
fill word; and

o the suffix 30 bits indicate the number of
consecutive groups of 31 zeros.

• If 31 bits in a group contain a mixture of “0”- and “1”-
bits, then these mixture bits are put into a literal word.
Specifically, a literal word is also represented as a 32-bit
word, which is

o prefixed with “0” to indicate that its identity
(i.e., word prefixed with “0” is a literal word);
and

o the suffix 31 bits capture the mixture of “0”-
and “1”-bits.

For illustrative purposes, let us consider a social network, in
which Kees follows Aart (user #31728), Brechtje (user #63344),
Cas (user #63349), Danique (user #63354), Evert (user #94611),
Famke (user #94632), Gerrit (user #94653), Hannie (user
#126231), Ignaas (user #126272).

Example 1. The original uncompressed bit vector for Kees
contains “1”-bits at positions 31728 (for Aart), 63344 (for
Brechtje), 63349 (for Cas), 63354 (for Danique), 94611 (for
Evert), 94632 (for Famke), 94653 (for Gerrit), 126231 (for
Hannie) and 126272 (for Ignaas). With at least 125532 bits, this
vector requires 3,946 words (of 32 bits), for a total of
126,272 bits to capture all followees of a single follower Kees.
This number is then multiplied by the number of followers to
capture followees of all followers in the social network.

Example 2. Continue with Example 1. When applying the
WAH compressed model, the vector for Kees can be
compressed into a bitmap consisting of a sequence of 12 (zero-
fill and literal) 32-bit words:

• The first 32-bit word in the sequence is a zero-fill word
10 00 0000 0000 0000 0000 0011 1111 1111, where
(a) the prefix “10” indicates that it is a zero-fill word and
(b) the suffix 11 1111 1111 (2) = 1023 (10) indicates
1023 groups of 31 consecutive zeros.

• The second 32-bit word in the sequence is a literal word
0 00000 00000 00001 00000 00000 00000 0, where
(a) the prefix “0” indicates that it is a literal word and
(b) the “1”-bit is in the 15th position of this word to
represent the followee Aart (i.e., user#31728) because of
the presence of “1”-bit in the 1023x31 + 15 = 31728th
position in the original bit vector.

• The third 32-bit word in the sequence is a zero-fill word
10 00 0000 0000 0000 0000 0011 1111 1011, where the
suffix indicates 11 1111 1011 (2) = 1019 (10) groups of
31 consecutive zeros.

• The fourth 32-bit word in the sequence is a literal word
0 00000 00000 10000 10000 10000 00000 0, where the
three “1”-bits are in the 11th, 16th and 21st positions of
this word. The “1”-bit in the 11th position represents the
followee Brechtje (user #63344) because of the presence
of “1”-bit in the (1023+1+1019)x31 + 11 = 63344th,
position in the original bit vector. Similarly, the “1”-bits
in the 16th and 21st positions of this word represent the
followees Cas (user #63349) and Danique (user #63354)
because of the presence of “1”-bits in the 63349th and
63354th positions in the original bit vector.

• The fifth 32-bit word in the sequence is a zero-fill word
10 00 0000 0000 0000 0000 0011 1110 1111, where the
suffix indicates 11 1110 1111 (2) = 1007 (10) groups of
31 consecutive zeros.

• The sixth 32-bit word in the sequence is a literal word
0 00000 00000 00000 00000 00000 00001 0, where the
“1”-bit is in the 30th position of this word to represent
the followee Evert (user #94611) because of the presence
of “1”-bits in the (1023+1+1019+1+1007)x31 + 30 =
94611th positions in the original bit vector.

• The seventh 32-bit word in the sequence is a literal word
0 00000 00000 00000 00001 00000 00000 0, where the
“1”-bit is in the 20th position of this word to represent
the followee Famke (user #94632) because of the
presence of “1”-bits in the (1023+1+1019+1+1007+1) x

31 + 20 = 94632nd position in the original bit vector.

• The eighth 32-bit word in the sequence is a literal word
0 00000 00001 00000 00000 00000 00000 0, where the
“1”-bit is in the 10th position of this word to represent
the followee Gerrit (user #94653) because of the
presence of “1”-bits in the (1023+1+1019+1+1007+2) x

31 + 10 = 94653rd position in the original bit vector.

• The ninth 32-bit word in the sequence is a zero-fill word
10 00 0000 0000 0000 0000 0011 1111 1001, where the
suffix indicates 11 1111 1001 (2) = 1017 (10) groups of
31 consecutive zeros.

• The 10th 32-bit word in the sequence is a literal word
0 00000 00000 00000 00000 00001 00000 0, where the
“1”-bit is in the 25th position of this word to represent
the followee Hannie (user #126231) because of the
presence of “1”-bits in the (1023+1+1019+1+1007+3
+1017)x31 + 30 = 126231st positions in the original bit
vector.

• The 11th 32-bit word in the sequence is a zero-fill word
10 00 0000 0000 0000 0000 0000 0000 0001, where the
suffix indicates 1 (2) = 1 (10) group of 31 consecutive
zeros.

• Finally, the 12th 32-bit word in the sequence is a literal
word 0 00000 00000 00000 00000 00001 00000 0,

661

where the “1”-bit is in the 9th position of this word to
represent the followee Ignaas (user #126272) because of
the presence of “1”-bits in the (1023+1+1019+1+1007+3
+1017+1+1)x31 + 9 = 126272nd positions in the original
bit vector.

In other words, this WAH compressed bitmap only requires
12x32 = 384 bits (cf. 126,272 bits for the original uncompressed
bit vector) to capture all followees of the follower Kees.

B. Improved Position List Word-Aligned Hybrid (IPLWAH)

Compression

Our improved position word-aligned hybrid IPLWAH(k)
compression model [62] improves WAH for social network
analysis and mining by combining:

• a zero-fill word (i.e., long run of consecutive zero groups
of “0”), with

• its succeeding literal word containing at most k “1”-bits.

The combined word is still (a) represented as a 32-bit word and
(b) having prefix “10” to indicate its identity (i.e., a compressed
zero-fill word). However, it uses at most k collections of 5 bits
(e.g., 3rd-7th bits, 8th-12th bits, ...) to indicate the positions of
at most k “1”-bits in a single group of 31 bits succeeding the long
run of consecutive groups of 31 zeros. The number of these
consecutive groups is indicated by the suffix 30–5k bits.
Practically, 1 ≤ k ≤ 5 for our IPLWAH(k) compression model.
To summarize, a zero-fill word in IPLWAH(k)—for 1 ≤ k ≤ 5
practically—is represented as a 32 bit word with:

• prefix “10” to indicate its identity (i.e., a compressed
zero-fill word);

• next k collections of 5 bits—in the 3rd bit to the (5k+2)-
th bit (e.g., 3rd-7th bits, 8th-12th bits, 13th-17th bits,
...)—indicate the positions of at most k “1”-bits in a
single group of 31 bits succeeding the long run of
consecutive groups of 31 zeros; and

• suffix 30–5k bits (e.g., suffix 25 bits, 20 bits, 15 bits, ...)
to indicate the number of these of consecutive groups of
31 zeros.

Example 3. Continue with Example 2. With our IPLWAH(1)
compressed model, the vector for Kees can be further
compressed into a bitmap consisting of a sequence of eight
(zero-fill and literal) 32-bit words. Most of the words in this
IPLWAH(1) compressed bitmap are identical to those in the
WAH compressed bitmap in Example 2, except the following:

• The first two 32-bit words in the WAH bitmap are
compressed to become the first 32-bit word in this
IPLWAH(1) sequence, which is a compressed zero-fill
word 10 01111 0 0000 0000 0000 0011 1111 1111,
where (a) the prefix “10” indicates that it is a zero-fill
word, (b) the suffix 11 1111 1111 (2) = 1023 (10) indicates
1023 groups of 31 consecutive zeros are followed by
(c) a “1”-bit at position 1111 (2) = 15 (10) of the succeeding
word representing Aart.

• The fifth and sixth 32-bit words in the WAH bitmap are
compressed to become the fourth 32-bit word in this

IPLWAH(1) sequence, which is a compressed zero-fill
word 10 11110 0 0000 0000 0000 0011 1110 1111,
where (a) the suffix indicates 11 1110 1111 (2) =
1007 (10) groups of 31 consecutive zeros are followed by
(b) a “1”-bit at position 11110 (2) = 30 (10) of the
succeeding word representing Evert.

• The ninth and tenth 32-bit words in the WAH bitmap are
compressed to become the seventh 32-bit word in this
IPLWAH(1) sequence, which is a compressed zero-fill
word 10 11001 0 0000 0000 0000 0011 1111 1001,
where (a) the suffix indicates 11 1111 1001 (2) = 1017 (10)
groups of 31 consecutive zeros are followed by (b) a “1”-
bit at position 11001 (2) = 25 (10) of the succeeding word
representing Hannie.

• Finally, the 11th and 12th 32-bit words in the WAH
bitmap are compressed to become the eighth 32-bit word
in this IPLWAH(1) sequence, which is a compressed
word 10 01001 0 0000 0000 0000 0000 0000 0001,
where (a) the suffix indicates 1 (2) = 1 (10) group of
31 consecutive zeros is followed by (b) a “1”-bit at
position 1001 (2) = 9 (10) of the succeeding word
representing Ignaas.

In other words, this IPLWAH(1) compressed bitmap only
requires 8x32 = 256 bits (cf. 384 bits for the WAH compressed
bitmap, and 126,272 bits for the original uncompressed bit
vector) to capture all followees of the follower Kees.

Example 4. Continue with Example 3. Further compression is
possible for higher values for k in our IPLWAH(k) compressed
model. As an example, when k=3, the vector for Kees can be
compressed into a bitmap consisting of a sequence of seven
(zero-fill and literal) 32-bit words. Most of the words in this
IPLWAH(3) compressed bitmap are identical to those in the
IPLWAH(1) compressed bitmap in Example 3, except that:

• the second and third 32-bit words in the IPLWAH(1)
bitmap are compressed to become the second 32-bit
word in this IPLWAH(3), which is a compressed zero-
fill word 10 01011 10000 10101 000 0011 1111 1111,
where (a) the prefix “10” indicates that it is a zero-fill
word, (b) the suffix 11 1111 1111 (2) = 1023 (10) indicates
1023 groups of 31 consecutive zeros are followed by
(c) three “1”-bits at positions 1011 (2) = 11 (10), 10000 (2)
= 16 (10) and 10101 (2) = 21 (10) of the single succeeding
word representing Brechtje, Cas and Danique.

In other words, this IPLWAH(3) compressed bitmap only
requires 7x32 = 224 bits (cf. 256 bits for the IPLWAH(1)
compressed bitmap, 384 bits for the WAH compressed bitmap,
and 126,272 bits for the original uncompressed bit vector) to
capture all followees of the follower Kees.

C. Multi-line Improved Position List Word-Aligned Hybrid

(M-IPLWAH) Compression

Our multi-line improved position word-aligned hybrid
M-IPLWAH(k) compression model [63] further improves
IPLWAH(k) for social network analysis and mining by
combining:

662

• a zero-fill word (i.e., long run of consecutive zero groups
of “0”), with

• its multiple consecutive succeeding literal words
containing at most k “1”-bits (with at least one “1”-bit in
each literal word).

A key difference between IPLWAH(k) and this M-IPLWAH(k)
compression models is that, the former only combines a single
literal word (containing at most k “1”-bits) succeeding the zero-
fill word, whereas the latter can combine multiple literal words
(with at most k ‘1”-bits distributed among these consecutive
literal words with at least one “1”-bit in each literal word)
succeeding the zero-fill word.

With our M-IPLWAH(k) compression model, the combined
word is still (a) represented as a 32-bit word and (b) having
prefix “10” to indicate its identity (i.e., a compressed zero-fill
word). It uses at most k collections of 5 bits (e.g., 3rd-7th bits,
8th-12th bits, ...) to indicate the positions of at most k “1”-bits,
which can be distributed among multiple consecutive groups of
31 bits succeeding the long run of consecutive groups of
31 zeros. The number of these consecutive groups is indicated
by the suffix 31–6k bits. Moreover, (k–1) bits are used for
indicating whether the current collection of 5 bits is on the same
“line” (i.e., is in the same group) as the previous ones.
Practically, 1 ≤ k ≤ 4 for our M-IPLWAH(k) compression
model. To summarize, a zero-fill word in M-IPLWAH(k)—for
1 ≤ k ≤ 4 practically—is represented as a 32 bit word with:

• prefix “10” to indicate its identity (i.e., a compressed
zero-fill word);

• next (k–1) bits—from the 3rd bit to the (k+1)-th bit (e.g.,
3rd, 4th, 5th bits)—serve as flags to indicate whether the
next “1”-bit is on the same “line” (i.e., the same literal
word) as the current one (e.g., whether the second “1”-
bit is on the same “line” as the first one, whether the third
“1”-bit is on the same “line” as the second one, ...).
Specifically:

o a flag with a value of “1” indicates the next
“1”-bit is on the next “line” succeeding the
current one, whereas

o a flag with a value of “0” indicates the next
“1”-bit is on the same “line” as the current
one;

• next k collections of 5 bits—in the (k+2)-th bit to the
(6k+1)-th bit (e.g., 3rd-7th bits for k=1; 4th-8th & 9th-
13th bits for k=2; 5th-9th, 10th-14th & 15th-19th bits for
k=3; ...)—indicate the positions of at most k “1”-bits
succeeding the long run of consecutive groups of
31 zeros; and

• suffix 31–6k bits (e.g., suffix 25 bits, 19 bits, 13 bits, ...)
to indicate the number of these of consecutive groups of
31 zeros.

Observation 1. Observed from the above specification, when
k=1, both IPLWAH(1) and M-PLWAH(1) produce the same
compressed bitmap. However, further compression is observed
for higher values of k (i.e., when k > 1).

Example 5. Continue with Example 4. With our M-IPLWAH(3)
compressed model, the vector for Kees can be further
compressed into a bitmap consisting of a sequence of five (zero-
fill and literal) 32-bit words. Most of the words in this
M-IPLWAH(3) compressed bitmap are identical or similar to
those in the IPLWAH(3) compressed bitmap in Example 4.
Specifically:

• the first, fourth and fifth words in this M-IPLWAH(3)
are identical to the corresponding words in IPLWAH:

o the first, seventh and eighth words in the
IPLWAH(1) compressed bitmap; or,

o the first, sixth and seventh words in the
IPLWAH(3) compressed bitmap.

It is because these words capture a long run of
consecutive groups of 31 zeros followed by only a single
“1”-bits (so that no flag bits need to be added):

• The second 32-bit word is similar—but not identical—to
that of IPLWAH(3) due to the addition of the flag bits:
10 0 0 01011 10000 10101 0 0011 1111 1111, where
(a) the suffix indicates 11 1111 1111 (2) = 1023 (10) groups
of 31 consecutive zeros are followed by (b) a “1”-bit at
position 1011 (2) = 11 (10) of a succeeding word
representing Brechtje. Then, (c) a “0”-bit flag in the 3rd
position indicates that (d) the next “1”-bit at position
10000 (2) = 16 (10) representing Cas is in the same word
representing Brechtje. Furthermore, (e) another “0”-bit
flag in the 4th position indicates that (f) the next “1”-bit
at position 10101 (2) = 21 (10) representing Danique is in
the same word representing Cas. In other words, all three
followees are in the same word.

• The third 32-bit word in this M-IPLWAH(3) compressed
bitmap is different because it is a compression of the
third, fourth and fifth words in the IPLWAH(3):
10 1 1 11110 10100 01010 0 0011 1111 1111, where
(a) the prefix “10” indicates that it is a zero-fill word,
(b) the suffix 11 1110 1111 (2) = 1007 (10) indicates 1007
groups of 31 consecutive zeros are followed by (c) a “1”-
bit at position 11110 (2) = 30 (10) of a succeeding word
representing Evert. Then, (d) a “1”-bit flag in the 3rd
position indicates that (e) the next “1”-bit at position
10100 (2) = 20 (10) representing Famke is in a word
succeeding the word representing Evert. Furthermore,
(f) another “1”-bit flag in the 4th position indicates that
(g) the next “1”-bit at position 1010 (2) = 10 (10)
representing Gerrit is in a word succeeding the word
representing Famke.

In other words, this M-IPLWAH(3) compressed bitmap only
requires 5x32 = 160 bits (cf. 224 bits for the IPLWAH(3)
compressed bitmap, 256 bits for the IPLWAH(1) compressed
bitmap, 384 bits for the WAH compressed bitmap, and
126,272 bits for the original uncompressed bit vector) to capture
all followees of the follower Kees.

663

III. OUR GAPPED-LINE IMPROVED POSITION LIST WORD-

ALIGNED HYBRID (G-IPLWAH) COMPRESSION

Observed from our illustrative social network that the
situation for three groups of followees—namely, (a) {Brechtje,
Cas, Danique}, (b) {Evert, Famke, Gerrit} and (c) {Hannie,
Ignaas}—are similar but not identical. Specifically, observed
from Example 2 that the first group of followees are happened
to be on the same literal word in the WAH compressed bitmap
due to the very close proximity of their user ID numbers.
Because of that, these three followees can be combined with
their preceding run of consecutive groups of 31 zeros in the
IPLWAH(3) compressed bitmap, and thus subsequent M-
IPLWAH(k) compressed bitmap. In contrast, the second group
of followees are not on the same literal word but on three
consecutive literal words (with each word containing one
followee). As such, although they are not compressed into a
single word in the IPLWAH(k) compressed bitmap, they can be
compressed into a single word. More precisely, they are
compressed into a single word with their preceding run of
consecutive groups of 31 zeros in the M-IPLWAH(3)
compressed bitmap. As for the third group of followees, they are
not even on two consecutive literal words. There is a gap of a
single zero-fill word with only one group of 31 zeros in between.
Consequently, they are not compressed into a words in the M-
IPLWAH(k) compressed bitmap. So, a logical question is: Can
the third group of followees be compressed?

Here, we response with a “yes” answer by designing a
gapped-line improved position list word-aligned hybrid
(G-IPLWAH) compression model. In this section, we describe
our G-IPLWAH(k, g) compression model for social network
analysis and mining. The idea is to combine:

• a zero-fill word (i.e., long run of consecutive zero groups
of “0”), with

• its multiple consecutive succeeding (literal or zero-fill)
words containing at most k “1”-bits (with at least one
“1”-bit in each literal word) and may contain a small gap
among these words.

A key difference between M-IPLWAH(k) and this
G-IPLWAH(k, g) compression models is that, the former only
combines consecutive multiple literal words (containing at most
k “1”-bits) succeeding the zero-fill word, whereas the latter can
combine consecutive multiple (literal or zero-fill) words (with at
most k ‘1”-bits distributed among these literal words with at least
one “1”-bit in each literal word)—and may contain gaps—
succeeding the zero-fill word. For instance, G-IPLWAH(k, g) is
expected to handle situations like that for followees Hannie and
Ignaas, in which the user ID numbers between the two is more
than 31, thus creating a gap with a zero-fill word consisting of
only one group of consecutive zeros.

With our G-IPLWAH(k, g) compression model, the
combined zero-fill word is still (a) represented as a 32-bit word
and (b) having prefix “10” to indicate its identity (i.e., a zero-fill
word). It uses the first 5 bits to indicate the position of the first
“1”-bits succeeding the long run of consecutive groups of
31 zeros. It uses (5+g) bits to indicate the positions of the
subsequent “1”-bits (for a total of at most k “1”-bits), and g
indicates the additional span of these (literal or zero-fill) words

to be combined into a single compressed zero-fill word. To
elaborate, as we use (5+g) bits to represent the positions of “1”-
bits, they can beyond the usual positions 1 to 31 into positions 1
to 2(5+g)–1. This allows us to combine multiple “lines” even with
small gaps in between. Here, the flag bits from M-IPLWAH(k)
is no longer needed, and thus saving (k–1) bits. As such, te
number of the consecutive groups of 31 zeros is indicated by the
suffix 25–(k–1)(5+g) bits. Practically, (1 ≤ k ≤ 3) and (0 ≤ g ≤ 2)
for our G-IPLWAH(k, g) compression model. To summarize, a
zero-fill word in G-IPLWAH(k, g)—for (1 ≤ k ≤ 3) and (0 ≤ g
≤ 2) practically—is represented as a 32 bit word with:

• prefix “10” to indicate its identity (i.e., a zero-fill word);

• next 5 bits (i.e., 3rd-7th bits) indicate the positions of the
first “1”-bits in a single group of 31 bits succeeding the
long run of consecutive groups of 31 zeros

• next (k–1) collections of (5+g) bits—in the (k+7)-th bit
to the (7+(k–1)(5+g))-th bit (e.g., 8th-21st bits when k=3
and g=2)—indicate the positions of at most (k–1) “1”-
bits succeeding the long run of consecutive groups of
31 zeros; and

• suffix 25–(k–1)(5+g) bits (e.g., suffix 11 bits when k=3
and g=2) to indicate the number of these of consecutive
groups of 31 zeros.

Observation 2. Observed from the above specification, when
g=0, both IPLWAH(k) and G-PLWAH(k, 0) produce the same
compressed bitmap. However, further compression is observed
for higher values of g (i.e., when g > 0).

Example 6. Continue with Example 4. With our
G-IPLWAH(3, 2) compressed model, the vector for Kees can be
further compressed into a bitmap consisting of a sequence of
four (zero-fill and literal) 32-bit words. Most of the words in this
G-IPLWAH(3, 2) compressed bitmap are identical or similar to
those in the IPLWAH(3) compressed bitmap in Example 4.
Specifically:

• The first word in this G-IPLWAH(3, 2) is identical to the
first word in IPLWAH(k).

• The second 32-bit word in this G-IPLWAH(3, 2) is
similar—but not identical—to that of IPLWAH(3) due to
bit size changes for indicating the positions of “1”-bits:
10 01011 0010000 0010101 011 1111 1111, where
(a) the suffix (i.e., 11 bits from the 22nd-32nd bits)
indicates 11 1111 1111 (2) = 1023 (10) groups of
31 consecutive zeros are followed by (b) three “1”-bits at
positions 1011 (2) = 11 (10), 10000 (2) = 16 (10) and 10101 (2)
= 21 (10) of a succeeding word representing Brechtje, Cas
and Danique. Here, the position of the first “1”-bit is
captured by 5 bits (i.e., 3rd-7th bits), whereas those of the
second and third “1”-bits are captured by 5+g = 7 bits
(i.e., 8th-14th and 15th-21st bits).

• The third 32-bit word in this G-IPLWAH(3, 2) is
different because it is a compression of the third, fourth
and fifth words in the IPLWAH(3) compressed bitmap:
10 11110 0110011 1001000 011 1111 1111, where
(a) the suffix indicates 11 1110 1111 (2) = 1007 (10) groups
of 31 consecutive zeros are followed by (b) three “1”-

664

bits at positions 11110 (2) = 30 (10), 110011 (2) = 51 (10) and
1001000 (2) = 72 (10) of an “extended” succeeding word
representing Evert, Famke and Gerrit. Here, the position
of the first “1”-bit is captured by 5 bits (i.e., 3rd-7th bits).
Those of the second and third “1”-bits are captured by
5+g = 7 bits (i.e., 8th-14th and 15th-21st bits), which
allow us to have positions beyond the usual position 31
(up to position 127), and thus enable us to capture these
three followees spanning over multiple (precisely, up
to 4) “lines” (cf. Brechtje, Cas and Danique who span on
the same “line” or the same literal word).

• The fourth 32-bit word in this G-IPLWAH(3, 2)
sequence is also different because it is a compression of
the sixth and seventh words in the IPLWAH(3):
10 11001 0 0000 0000 0000 0011 1111 1001, where
(a) the suffix indicates 11 1111 1001 (2) = 1017 (10) groups
of 31 consecutive zeros are followed by (b) two “1”-bits
at positions 11001 (2) = 25 (10) and 1101011 (2) = 107 (10)

of an “extended” succeeding word representing Hannie
and Ignaas. Here, the position of the first “1”-bit is
captured by 5 bits (i.e., 3rd-7th bits). That of the second
“1”-bit is captured by 5+g = 7 bits (i.e., 8th-14th bits),
which enable us to capture these two followees spanning
over three “lines” with gaps (i.e., the “1”-bit for Hannie
is in one “line”, that for Ignaas is in the third “line”, and
no “1”-bit in the second “line” between them. This is
quite different from the “1”-bits for Evert, Famke and
Gerrit who span on three consecutive “line” or literal
word with at least one “1”-bit in each “line”).

In other words, this G-IPLWAH(3, 2) compressed bitmap only
requires 4x32 = 128 bits (cf. 160 bits for M-IPLWAH(3)
compressed bitmap, 224 bits for the IPLWAH(3) compressed
bitmap, 256 bits for the IPLWAH(1) compressed bitmap, 384
bits for the WAH compressed bitmap, and 126,272 bits for the
original uncompressed bit vector) to capture all followees of the
follower Kees.

IV. EVALUATION

In terms of functionality, the WAH compression model aims
to compress consecutive groups of 31 zeros. The IPLWAH(k)
model combines a few (say, up to k=5 practically) “1”-bits
appear on the same “line” (i.e., literal word) succeeding run of
consecutive groups of 31 zeros. The M-PLWAH(k) model
combines a few (say, up to k=4 practically) “1”-bits appear on
consecutive “lines” (without gaps) succeeding run of
consecutive groups of 31 zeros. The G-PLWAH(k, g) model
further combines a few (say, up to k=3 practically) “1”-bits
appear on multiple “lines” (with may have gaps) succeeding run
of consecutive groups of 31 zeros. See Table I.

In terms of memory and runtime, evaluation on datasets from
SNAP Stanford Large Network Collection (e.g., ego-Gplus,
ego-Twitter) show that G-PLWAH(k, g) further compresses the
data, and thus requires less space, than related works.
Consequently, evaluation results also show a reduction in
runtime for social network analysis and mining (e.g., mining
groups of frequently followed social entities/followees).

TABLE I. FUNCTIONALITY OF COMPRESSION MODELS

Handle “1”-bits
following 0s

WAH IPLWAH M-IPLWAH G-IPLWAH

on same “line” x

over multi-
lines w/o gaps

x x

over multi-
lines w/ gaps

x x x

CONCLUSIONS

In this paper, we presented a gapped gapped-line improved
position list word-aligned hybrid (G-IPLWAH) compression for
social network analysis and mining for very sparse but big social
data. The G-IPLWAH(k, g) extends the number of bits to
represent positions of “1”-bits beyond the usual 31 bits. This
allows us to capture “1”-bits spanning over multiple “lines” (i.e.,
literal words) even with gaps. As a logical continuation along
with the directions on compression for sparse social networks
over the past few IEEE/ACM ASONAM, this compression
model is more flexible and further compresses social data than
previous ones. As ongoing and future work, we explore further
compression for effective social network analysis and mining..

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), as well as
the University of Manitoba.

REFERENCES

[1] M. Day, et al., “AI robo-advisor with big data analytics for financial
services,” in IEEE/ACM ASONAM 2018, pp. 1027-1031.

[2] M. Kaya, et al. (eds.), Social Network Based Big Data Analysis and
Applications, 2018.

[3] A. Kobusinska, et al., “Emerging trends, issues and challenges in Internet
of Things, big data and cloud computing,” FGCS 87, 2018, pp. 416-419.

[4] C.K. Leung, “Big data analysis and mining,” in Encyclopedia of
Information Science and Technology, 4e, 2018, pp. 338-348.

[5] C.K. Leung, “Big data computing and mining in a smart world,” in Big
Data Analyses, Services, and Smart Data, 2021, pp. 15-27.

[6] K.F. Xylogiannopoulos, et al., “Frequent and non-frequent pattern
detection in big data streams: an experimental simulation in 1 trillion data
points,” in IEEE/ACM ASONAM 2016, pp. 931-938.

[7] F. Jiang, C.K. Leung, “A data analytic algorithm for managing, querying,
and processing uncertain big data in cloud environments,” Algorithms
8(4), 2015, pp. 1175-1194.

[8] C.K. Leung, “Uncertain frequent pattern mining,” in Frequent Pattern
Mining, 2014, pp. 417-453.

[9] C. Zhang, O.R. Zaïane, “Detecting local communities in networks with
edge uncertainty,” in IEEE/ACM ASONAM 2018, pp. 9-16.

[10] J. de Guia, et al., “DeepGx: deep learning using gene expression for
cancer classification,” in IEEE/ACM ASONAM 2019, pp. 913-920.

[11] C.K. Leung, et al., “Predictive analytics on genomic data with high-
performance computing,” in IEEE BIBM 2020, pp. 2187-2194.

[12] T. Pawliszak, et al, “Operon-based approach for the inference of rRNA
and tRNA evolutionary histories in bacteria,” BMC Genomics 21
(Supplement 2), 2020, pp. 252:1-252:14.

[13] O.A. Sarumi, C.K. Leung, “Exploiting anti-monotonic constraints for
mining palindromic motifs from big genomic data,” in IEEE BigData
2019, pp. 4864-4873.

[14] S.D. Bernhard, et al., “Clickstream prediction using sequential stream
mining techniques with Markov chains,” in IDEAS 2016, pp. 24-33.

665

[15] K.F. Xylogiannopoulos, et al., “Clickstream analytics: an experimental
analysis of the amazon users' simulated monthly traffic,” in IEEE/ACM
ASONAM 2018, pp. 841-848.

[16] D. Choudhery, C.K. Leung, “Social media mining: prediction of box
office revenue,” in IDEAS 2017, pp. 20-29.

[17] J.A. Brown, et al., “A machine learning system for supporting advanced
knowledge discovery from chess game data,” in IEEE ICMLA 2017,
pp. 649-654.

[18] V. Cedeno-Mieles, et al., “Mechanistic and data-driven agent-based
models to explain human behavior in online networked group anagram
games,” in IEEE/ACM ASONAM 2019, pp. 357-364.

[19] K.E. Barkwell, et al., “Big data visualisation and visual analytics for
music data mining,” in IV 2018, pp. 235-240.

[20] C. Dhahri, et al., “Mood-aware music recommendation via adaptive song
embedding,” in IEEE/ACM ASONAM 2018, pp. 135-138.

[21] C. Fan, et al., “Social network mining for recommendation of friends
based on music interests,” in IEEE/ACM ASONAM 2018, pp. 833-840.

[22] M. Ahmed, et al., “Anomaly detection on big data in financial markets,”
in IEEE/ACM ASONAM 2017, pp. 998-1001.

[23] C.K. Leung, et al., “A machine learning approach for stock price
prediction,” in IDEAS 2014, pp. 274-277.

[24] K.J. Morris, et al, “Token-based adaptive time-series prediction by
ensembling linear and non-linear estimators: a machine learning approach
for predictive analytics on big stock data,” in IEEE ICMLA 2018,
pp. 1486-1491.

[25] C.K. Leung, et al., “Data science for healthcare predictive analytics,” in
IDEAS 2020, pp. 8:1-8:10.

[26] J. Souza, et al., “An innovative big data predictive analytics framework
over hybrid big data sources with an application for disease analytics,” in
AINA 2020, pp. 669-680.

[27] H. Vural, et al., “A model based on random walk with restart to predict
circRNA-disease associations on heterogeneous network,” in IEEE/ACM
ASONAM 2019, pp. 929-932.

[28] Y. Chen, et al., “Temporal data analytics on COVID-19 data with
ubiquitous computing,” in IEEE ISPA-BDCloud-SocialCom-
SustainCom 2020, pp. 958-965. doi: 10.1109/ISPA-BDCloud-
SocialCom-SustainCom51426.2020.00146

[29] P. Gupta, et al., “Vertical data mining from relational data and its
application to COVID-19 data,” in Big Data Analyses, Services, and
Smart Data, 2021, pp. 106-116.

[30] C.K. Leung, et al., “Big data science on COVID-19 data,” in IEEE
BigDataSE 2020, pp. 14-21. doi: 10.1109/BigDataSE50710.2020.00010

[31] C.K. Leung, et al., “Big data visualization and visual analytics of COVID-
19 data,” in IV 2020, pp. 415-420. doi: 10.1109/IV51561.2020.00073

[32] C.K. Leung, et al., “Machine learning and OLAP on big COVID-19 data,”
in IEEE BigData 2020, pp. 5118-5127.

[33] Q. Liu, et al., “A two-dimensional sparse matrix profile DenseNet for
COVID-19 diagnosis using chest CT images,” IEEE Access 8, 2020,
pp. 213718-213728.

[34] A.A. Audu, et al., “An intelligent predictive analytics system for
transportation analytics on open data towards the development of a smart
city,” in CISIS 2019, pp. 224-236.

[35] P.P.F. Balbin, et al., “Predictive analytics on open big data for supporting
smart transportation services,” Procedia Computer Science 176, 2020,
pp. 3009-3018.

[36] C.K. Leung, et al., “An innovative fuzzy logic-based machine learning
algorithm for supporting predictive analytics on big transportation data,”
in FUZZ-IEEE 2020. doi: 10.1109/FUZZ48607.2020.9177823

[37] C.K. Leung, et al., “Data mining on open public transit data for
transportation analytics during pre-COVID-19 era and COVID-19 era,”
in INCoS 2020, pp. 133-144.

[38] C.K. Leung, et al., “Effective classification of ground transportation
modes for urban data mining in smart cities,” in DaWaK 2018, pp. 83-97.

[39] C.K. Leung, et al., “Urban analytics of big transportation data for
supporting smart cities,” in DaWaK 2019, pp. 24-33.

[40] L. Idan, J. Feigenbaum, “Show me your friends, and I will tell you whom
you vote for: predicting voting behavior in social networks,” in
IEEE/ACM ASONAM 2019, pp. 816-824.

[41] F. Jiang, et al., “Finding popular friends in social networks,” in CGC
2012, pp. 501-508.

[42] C.K. Leung, et al., “Big data analytics of social network data: who cares
most about you on Facebook?” in Highlighting the Importance of Big
Data Management and Analysis for Various Applications, 2018, pp. 1-15.

[43] M. Mai, et al., “Big data analytics of Twitter data and its application for
physician assistants: who is talking about your profession in Twitter?” in
Data Management and Analysis, 2020, pp. 17-32.

[44] C.K. Leung, et al., “Visual analytics of social networks: mining and
visualizing co-authorship networks,” in HCII-FAC 2011, pp. 335-345.

[45] R. Molontay, M. Nagy, “Two decades of network science: as seen through
the co-authorship network of network scientists,” in ,” in IEEE/ACM
ASONAM 2019, pp. 578-583.

[46] C.K. Leung, et al., “Mining ‘following’ patterns from big but sparsely
distributed social network data,” in IEEE/ACM ASONAM 2018, pp. 916-
919.

[47] K.E. Dierckens, et al., “A data science and engineering solution for fast
k-means clustering of big data,” in IEEE TrustCom-BigDataSE-ICESS
2017, pp. 925-932.

[48] C.K. Leung, F. Jiang, “A data science solution for mining interesting
patterns from uncertain big data,” in IEEE BDCloud 2014, pp. 235-242.

[49] A.K. Chanda, et al., “A new framework for mining weighted periodic
patterns in time series databases,” ESWA 79, 2017, pp. 207-224.

[50] A. Fariha, et al., “Mining frequent patterns from human interactions in
meetings using directed acyclic graphs,” in PAKDD 2013, Part I, pp. 38-
49.

[51] F. Jiang, et al., “Big data mining of social networks for friend
recommendation,” in IEEE/ACM ASONAM 2016, pp. 921-922.

[52] C.K. Leung, C.L. Carmichael, “FpVAT: A visual analytic tool for
supporting frequent pattern mining,” ACM SIGKDD Explorations 11(2),
2009, pp. 39-48.

[53] K.F. Xylogiannopoulos, et al., “Text mining for malware classification
using multivariate all repeated patterns detection,” in IEEE/ACM
ASONAM 2019, pp. 887-894.

[54] S. Ahn, et al., “A fuzzy logic based machine learning tool for supporting
big data business analytics in complex artificial intelligence
environments,” in FUZZ-IEEE 2019, pp. 1259-1264.

[55] C.K. Leung, “Mathematical model for propagation of influence in a social
network,” in Encyclopedia of Social Network Analysis and Mining, 2e,
2018, pp. 1261-1269.

[56] Y. Cao, et al., “Hybrid deep learning model assisted data compression and
classification for efficient data delivery in mobile health applications,”
IEEE Access 8, 2020, pp. 94757-94766.

[57] H. Jiang, S. Lin, “A rolling hash algorithm and the implementation to LZ4
data compression,” IEEE Access 8, 2020, pp. 35529-35534.

[58] H. Fu, et al., “An extended hybrid image compression based on soft-to-
hard quantification,” IEEE Access 8, 2020, pp. 95832-95842.

[59] K.S. Kumar, et al., “Efficient video compression and improving quality
of video in communication for computer encoding applications,” Comput.
Commun. 153, 2020, pp. 152-158.

[60] S.M. Hossein, et al., “DNA sequences compression by GP2 R and
selective encryption using modified RSA technique,” IEEE Access 8,
2020, pp. 76880-76895.

[61] C.K. Leung, et al., “Mining ‘following’ patterns from big sparse social
networks,” in IEEE/ACM ASONAM 2016, pp. 923-930.

[62] C.K. Leung, F. Jiang, “Efficient mining of 'following' patterns from very
big but sparse social networks,” in IEEE/ACM ASONAM 2017,
pp. 1025-1032.

[63] C.K. Leung, et al., “Flexible compression of big data,” in IEEE/ACM
ASONAM 2019, pp. 741-748.

666

