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Abstract—As research into the dynamics and properties of
opinion diffusion on social networks has increased, so too has the
attention paid to modeling such systems. Simulations using agent-
based modeling (ABM) analyze aggregate network outcomes
when individual agents act on typically limited information, and
tend to focus on agents that are conforming and homophilic
— that is, they prefer to be around similar others, and they
update their own personal state over time to be more like their
friends. In this work, we illustrate the value of diverse agent
modeling in environments that allow for strategic unfriending.
We focus on network dynamics generated by three agent models,
or archetypes. Our work shows that polarization and consensus
dynamics, as well as topological clustering effects, may rely more
than previously known on the interplay between individuals’
goals for the composition of their neighborhood’s opinions.

I. INTRODUCTION

Current events have brought significant attention to the
ability of online social interaction to effect outcomes in the
real world. It is postulated that bad actors were able to sway
the direction of both the Brexit vote in the UK and the US
presidential election of 2016 (e.g., [18]). Even outside the
realm of major historical events, discussion abounds of the
effects — both good and bad — of selective exposure to
information in online social networks, running the gamut from
self-realization to radicalization. Whatever the true extent of
these effects is, it has become hard to deny that they exist.

One of the major difficulties in developing robust models for
such processes is the heterogeneity of individuals in the net-
works at hand. For instance, a simulation of political attitudes
has to take into account the fact that agents will fall into one or
more of a set of categories, and will act according to different
motivations based in part on their group membership. This
is not restricted to similarity-seeking agents, but much of the
foundational and ongoing work in this vein focuses on agents
that are more-or-less indistinguishable from one another in
both goals and behaviors. Mostly, these studies are concerned
with the emergence and stability of, e.g., opinion consensus
within a network, and how to calculate optimal policies to
bring about (or disrupt) consensus.

Research on diffusion and other processes over social net-
works considers some condition spreading through the network
in discrete time steps, given a single rule to determine each
node’s state at each time step based in some way on the
states of one or more of the node’s neighbors. Research

building on these models added features including: social
influence, making some nodes more effective at propagating
their state than others [2], [5], [9], [21]; masks, enabling
nodes to either broadcast their state to the network or keep it
hidden [11]; multidimensional diffusion spaces, which allow
more than one phenomenon to spread through the network
simultaneously [3], [5], [9], [20]; and in the multidimensional
case, correlations between issues so that a node is more or less
likely to flip its state in one dimension depending on its state
in another [6], [9]. Most research in opinion diffusion rests on
the assumption that all agents in a network prefer connections
to others who hold the same opinion(s); there are exceptions
to this rule, and some forms of opinion antagonism and their
effects on the topology and opinion space of social networks
have occasionally been investigated [10], [12], [13], [16], [19].

In this work, we examine the characteristic behavior of net-
works in the presence of three agent archetypes: homogeneous
(HOM), heterogeneous (HET), and adversarial (ADV). These
agent types are defined along two dimensions: homophily (het-
erophily) — the preference for connections to others who have
similar (dissimilar) opinions — and conformity (contrarian) —
the tendency to move towards (away from) friends’ opinions.
We explore a) how different mixtures of these agent types
affect both the topology and opinion space of the network,
and b) how resistance to opinion influence alters long-term
network outcomes. This work illustrates the impact of multiple
interacting agent types on a network, and opens the door for
new research into the finer implications of these modeling
strategies.

II. RELATED WORK

Pilditch et al. [17] developed an agent-based opinion cas-
cade model in which opinions diffuse through a network based
on individual agent decisions. The authors develop synthetic
networks in a unidimensional opinion space, with agents
moving through opinion space based on their observations of
their friends’ known opinions. Agents observe the opinion of
the first of their neighbors to declare it publicly, and use a
simple Q-learning model to determine whether or not they will
update their own opinions. Their experiments on a uniform
agent type showed that the network stayed nearly evenly split
in terms of opinions, but that clustering with like-minded
agents was a dependable outcome.
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Duggins [8] provides a similar model. In it, agents have
attributes for tolerance of dissimilar opinion, susceptibility
to social influence, and desire to conform to social norms,
where “conformity” refers to how far between an agent’s
true opinion and the socially normative opinion the agent
wishes to appear to others. Simulations involve individuals
in neighborhoods expressing an opinion somewhere between
what they truly believe and the socially normative opinion. Ye
et al. [22] also investigate a model featuring separate private
and public opinions for agents. Madsen et al. [15] use an
update scheme roughly the same as the bounded confidence
model [4]. Agents have a real-valued opinion about the state of
the world. Each time step agents seek out others whose opinion
is close enough to their own, then update their opinion based
on the aggregation of observed opinions.

Chen et al. [3] model agent-based opinion dynamics with
an additional personality parameter for modeling homophily.
New edges are created between pairs of nodes with probability
proportional to the Euclidean distance between their opinion
vectors. Li et al. [14] use the Stubborn Individuals and Orators
(SO) model [7], which uses two additional parameters to
model how resistant individuals are to opinion change, and
how influential individuals are, both of which our model
accommodates. Banisch et al. [1] explore the dynamics of
opinion formation when social feedback is used as a rein-
forcement learning signal.

III. THE MODEL

We begin with a traditional network graph G = 〈V,E〉,
where V is the set of nodes, or agents, and E is the set of
edges, or connections between them. Many settings require
that a weight vector W be included in the definition of the
graph, but for this work we assume that all edge weights are
equal. Each node is embedded within a k-dimensional binary
opinion space, and their positions in this space change over
time dependent on the positions of adjacent nodes. We refer to
node i’s position in opinion space at time t as ~bti = {−1, 1}k.
We will refer to i’s opinion on topic k at time t as btik. Each
agent in our networks embodies one of three archetypes that
govern their behavior.

Archetypes are defined by properties relating to preferences
over opinions as well as opinion mobility. The HOM archetype
is both homophilic and conforming — i.e., HOM agents prefer
connections to other agents with similar opinions (the more
similar the better), and over time they move closer to the
majority opinion in their neighborhood. ADV agents are the
opposite in both ways; they are heterophilic and contrarian
— i.e., they prefer connections to others who disagree with
them, and they move away from their neighborhood’s majority
opinion. These two types are reasonable proxies for people
who prefer similarity — a widely known human characteristic
— and people who prefer to delineate themselves from the
crowd. Our final archetype, HET, is meant to represent another
human cohort: people who do tend to conform over time to the
majority opinion, but prefer a wide array of opinions within
their neighborhood. Functionally, the implementation of each

archetype is achieved through the combination of an update
rule and a reward function.

The update rule for each agent is a function taking a
neighborhood’s average opinion as input and producing a new
opinion vector. An update rule is of the form: if neighborhood
average opinion is strong enough and opposite of what
I want,1 then flip my opinion with some probability. The
threshold for “strong enough” and the definition of “what I
want” are design decisions. At each time step, agents see
their neighbors’ opinions and use those to update their beliefs.
When agent i goes to update its opinions, it first calculates the
average opinion on each topic k within its neighborhood as
b̃ik = |N(i)|−1

∑
j∈N(i) bjk. The agent can then determine

whether its neighborhood mostly agrees with it by testing
b̃ik ∗ bik < 0 or not. This information can then be used to
determine how i’s opinions move through opinion space.

Conforming archetypes update their opinions to move to-
ward their neighborhood majority opinion. Thus, if agent i is
either HOM or HET, its opinion update takes the following
form:

bt+1
ik =

{
btik if b̃ik ∗ bik ≥ 0

−btik if b̃ik ∗ bik < 0.

Reversing the signs on the resulting cases gives the update
rule for contrarian agents, who move away from the majority
opinion. In the case that an agent decides to flip its opinion
on a topic, the flip happens with probability 0.5 for our
experiments.

The reward function for each archetype must describe its
preferences for neighbors’ opinion profiles relative to its
own. HOM agents prefer connections to others with similar
opinions, so their reward function should correlate positively
with the amount of agreement they have with their neighbors
to reflect this. The simplest way to accomplish this is to set
their reward function rhomi (j) = 1 − d(i, j), where d(i, j)
is the percentage of disagreeing entries between bti and btj .
Similarly, we can define the reward function for ADV agents
as radvi (j) = d(i, j), which is maximized with neighbors who
agree with the agent on nothing at all. Finally, HET agents’
reward function is set to be maximized by a neighbor who
agrees on exactly half of the topics, and disagrees on the other
half, decreasing linearly to 0 as the neighbor tends toward total
agreement or disagreement.

Agents are also given policies based on their archetypes.
These policies are simple constructions to allow agents to
sever connections they consider not worthwhile in terms of
reward. This allows all agents in our networks to self-organize
to fit their preferences. A final aspect we associate with
archetypes for this work is resistance to influence. This is
a scalar parameter determining each agent’s threshold for
opinion change — more resistant agents will not consider
changing an opinion unless a more significant portion of their
neighbors have the desired opinion.

1We use the term “want” to reflect that some agents do not desire agreement
with the majority, but rather prefer that the majority holds the opinion opposite
their own.
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Fig. 1: Fully mixed networks with uniform resistance to
opinion influence separate into disjoint groups. Types are
HOM (blue), HET (green), and ADV (orange). Node positions
are arbitrary, but more densely connected clusters are shown
physically closer than sparsely connected clusters.

IV. EXPERIMENTS

We conducted several experiments to investigate the effects
of different agent types on the evolution of a network’s
topology and opinion space. We illustrate these archetypes’
effect on the behavior of networks they inhabit. In particular,
we investigate: a) the effects of different proportional mixes
of agent types, b) initial network densities, and c) resistance
levels by agent type. All networks used were of 100 agents,
and were small world networks with average degree dependent
on the experiment.

1) The Effects of Network Composition: To investigate the
impact of the agent type distribution on network outcomes,
we ran 10 100-step simulations on networks with each of the
following distributions (% HOM / % HET / %ADV): 34/33/33,
50/25/25, 60/20/20, and 70/15/15. For these experiments, we
held agent resistance to 0 for all agents.

Figure 1 shows a typical outcome in these networks, inde-
pendent of type distribution. The network in the figure resulted
from a 70/15/15 run, but the apparent patterns existed in all
conditions tested. Regardless of the distribution of agent types,
these networks almost always separated into three cohorts: the
HET agents, who end up isolated in the network as consensus
begins to take over in the core; the HOM agents, who again
aggregate into a complete subgraph (unless their numbers
were great enough, in which case they typically split into two
disjoint, disagreeing clusters); and the ADV agents form a
core periphery cluster. Further, in each simulation the network
would remain without isolates for several steps until one HET
agent left; once that happened, the rest of the HET agents left
very quickly thereafter. The ADV and HOM clusters, though
already formed, never separate from each other until most or
all of the HET agents leave.

2) The Effects of Initial Density: The initial density of the
network can have significant influence over its evolution. For
example, in pure ADV networks an initial density set too small
will cause the network to fragment more. We used the same
conditions as in the previous experiments, but with average
degree = 5, 10, 15, 20, and 25. At average degree 5, agents
did not have enough connections to form anything more than
two- to six-member components under any type distribution.
However, more evenly-split networks did tend to break apart

Fig. 2: When HET agents have a higher resistance to influence,
they prevent networks from separating into disjoint camps.

into smaller groups on average. ADV agents also appeared to
benefit from this slightly, in some cases maintaining a cluster
with one of the other agent types.

An overly sparse initial network lends itself to fragmentation
as would be expected, whereas sufficiently dense starting
networks appear to almost always separate into disjoint com-
ponents delineated by agent type. The novel illustration is
that polarization is not restricted to opinion space. In other
words, in our experiments we saw not only the expected
polarization in opinion, but also in the proclivity of agents
to self-segregate based on type. Even HET agents, before
they split apart entirely, formed tighter communities with each
other than with either of the other archetypes. This means that
even non-homophilic agents tend to bond most strongly and
persistently with each other.

3) The Effects of HET Agent Resistance Levels: The ob-
servations of our last two sets of experiments make clear
that agents seeking balance may have additional complications
finding a suitable situation for themselves within the network
given the behavior of other archetypes. These agents also seem
to have a cohesive effect on the network as a whole. Whenever
mixed networks split apart along opinion and/or archetype
lines, they only do so after most of the HET agents have left.

It makes sense that these agents would choose to leave the
network once the other types have entrenched themselves in
their own segregated camps, because by definition HET agents
have two reward “valleys”: total agreement and total disagree-
ment. These two valleys overlap the reward peaks of the other
two archetypes, creating a balancing act between them. Our
last set of experiments is designed to test the aggregate effects
of endowing HET agents with greater resistance to opinion
influence.

Agents in this style environment who have a greater open-
ness to different opinions tend to foster consensus rather than
hinder it [16]. We varied HET agents’ resistance value from
0.0 to 0.5, which corresponds to agents needing between half
and 3/4 of their neighbors to disagree with them on a topic
before they might flip their opinion.

In most tests with resistance set to 0.0 for HET agents,
the networks split apart into camps. Figure 2 illustrates the
characteristic outcome we observed when we increased that
value to 0.25. After 100 steps, most of the HET agents in
the network had left, just as before. However, a small cluster
of them remained in between the two other clusters, which
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Fig. 3: The effect of resistant HET agents on opinion con-
sensus. Both plots show the network-wide average opinion on
each topic, where the x-axis shows time, and the y-axis shows
the average opinion. Each color corresponds to one topic, and
multiple lines of the same color represent different runs begun
from the same initial conditions. If a line rises all the way to
y = 1, it means every node in the network adopted an opinion
of 1 on that topic. If a line stays at y = 0, then half the nodes
have opinion 1 and the other half have opinion -1.

organized themselves in their characteristic ways. It can be
seen that one agent was possibly about to leave the network,
even after 100 steps, so it is immediately evident that HET
agents alleviate some topological rigidity.

A. Effects on Consensus

It has been shown that the presence of heterophilous agents
in a network help foster consensus [16]; our findings support
this idea. Figure 3 shows the movement of opinion averages
over 100 steps in a network evenly split between all three
archetypes. The panels correspond to two levels of HET
agent resistance to influence: 0.0 (top) and 0.5 (bottom).
Each opinion has its own color, and lines of a single color
represent the average opinion on a single topic across the
network. Each line shows the average of a single opinion
over a separate experiment from the same initial conditions.
The figure shows that, when HET agents probabilistically
update their opinion whenever a strict majority of their friends
have the opposite opinion (i.e. HET agents had a resistance
level of 0.0, top panel), the network settles into a stable
opinion configuration at around t = 40. Here, the network
exhibits a roughly 2/3 to 1/3 weighting on opinions of 1
versus opinions of -1 for every topic. Alternatively, when
HET agents require more disagreement from their friends with
their own opinions to consider changing (bottom panel), stable
opinion configurations often do not emerge at all. The network
still seems to find a relative “comfort zone” with respect the
distribution of opinions, but each step sees some individuals
change their mind. This seems to show that having a cohort

Fig. 4: HET agents can have an even larger effect when
HOM agents are a significant majority. Resistant agents help
network-wide opinions to maintain multiple well-represented
sides. When these agents are not resistant to opinion influence,
near-complete consensus manifests across all topics.

of relatively stubborn HET agents does not generally cause
chaos in the opinion space of a network, but rather fosters its
ability to remain somewhat fluid.

Figure 4 shows a more dramatic effect. Again, the top
panel represents a network with HET agents who update their
opinion probabilistically based on the majority rule. It can
be seen that, on every topic, almost all individuals in the
network had the same opinion — either 1 or -1 — i.e., there
were no topics that had a significant number of proponents on
both sides. However, when HET agents were more resistant
to changing their mind, several topics remained approximately
evenly split; about half the network had an opinion of 1,
and the other half had an opinion of -1. Even though the
resistant HET agents made up only 15% of the network,
their presence caused a severe disruption in the process of
average opinions drifting to the two opinion poles. These
results together support the idea that heterophilic agents who
follow the same update rules as their homophilic counterparts
tend to lead networks toward opinion stability.

Once those configurations were established, there was no
further deviation. Notable, then, is the fact that resistant HET
agents seem to foster opinion fluidity in the network, but
not radically. That is, their presence, even in small num-
bers, appears to be associated with an opinion space that
quickly settles into a general configuration within which some
individuals are constantly exploring; it is not the case that
these networks exhibit highly chaotic evolutions in opinion
over time. We ran the same set of experiments again, but
with a time horizon of 300 steps to see if these networks
did eventually settle into a stable configuration. We found
that they did not. Networks with some portion of influence-
resistant HET agents are able to maintain a relatively, but not
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completely, stable opinion configuration across longer spans
of time than networks without. With resistant HET agents
present, HOM agents no longer formed a unanimous opinion
set across all topics. There was still consensus on some topics,
but others found a stable configuration with roughly half the
agents representing each of the two opinions (1 or -1). The
HET agents were also unanimous on some topics, although
they showed more variability. Finally, the ADV agents did not
all reach a unanimous position on any topic, and showed the
most variability in terms of opinion space outcomes.

These results illustrate the extent to which network dy-
namics can be influenced by the presence of different agent
types, and begs further investigation into more archetypes.
Specifically, while traditional conforming homophilic and con-
trarian heterophilic agents influence the network in predictable
ways, the addition of conforming agents that are directly
in the middle of the homophilic/heterophilic continuum and
are harder to influence produced unexpected outcomes. They
introduced a new topological dynamic due to their particular
behavior, and also fostered fluidity and dissuaded unanimity
in opinion space.

V. CONCLUSION

In this work, we modeled different agent archetypes for
opinion diffusion simulations, defined both by their notion of
utility as well as their behavior during the state-update phase of
each time step. We then presented results from an investigation
into the interactions of some different types.

We explored the collective behavior of typical homophilic
agents who become more like their neighbors, heterophilic
agents who are contrarians, and agents who try to balance sim-
ilarity with dissimilarity in their own regions of the network.
Our tests showed that, when HET agents are present in the
network, they often act as bonds that hold the network mostly
together, keeping self-segregated clusters of HOM and ADV
agents from becoming completely disconnected from each
other. We observed repeatedly that networks tended to stay
connected until the ejection of a HET agent, which seemed
to have a cascading effect ending when the last HET agent
separated and the clusters they were connecting come apart
entirely. Networks with mixed agent types appear to be sen-
sitive to multiple conditions, of which we studied the amount
of resistance HET agents have to external influence, and the
relative proportions of the archetypes in the network. The
amount of HET resistance played a pivotal part in determining
network outcomes with respect to those agents. In opinion
space, the parameters of HET agents were also important.
Networks with a more even mix of agent types permitted a
more even representation of opinions on all topics — that is,
the network was split in approximately a 2:1 ratio of opinions
of 1 versus -1 or vice versa. Networks that had fewer HET
and ADV agents were prone to converge to a nearly network-
wide consensus on all topics. Resistant HET agents appeared
to alleviate this condition.

This work lends itself to several extensions. More robust
methods for creating new links must be implemented to more

closely mirror the mechanics of real-world networks. We be-
lieve that this dynamic will uncover further information about
long term network configurations. Further, the notion of reward
for HET agents is currently rudimentary, and more nuanced
alternatives need to be explored. Finally, the possibilities for
learning agents could have broad real-world implications.
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