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Abstract—A complex enterprise includes multiple subsystems
and organizations. The U.S. Marine Corps (USMC) maintenance
and supply chain is a complex enterprise and exemplifies a socio-
technological infrastructures. It is imperative for the USMC to
adopt more advanced data sciences including ML/AI techniques
to the entire spectrum or end-to-end (E2E) logistic planning
as a complex enterprise including maintenance, supply, trans-
portation, health services, general engineering, and finance. In
this paper, we first review an overall framework of leveraging
artificial Intelligence to learn, optimize, and win (LAILOW) for
a complex enterprise, and then show how a LAILOW framework
is applied to the USMC maintenance and supply chain data as
a use case. We also compare various machine learning (ML) al-
gorithms such as supervised machine learning/predictive models
and unsupervised machine learning algorithms such as lexical
link analysis (LLA). The contribution of the paper is that LLA
computes stable and sensitive components of a complex system
with respective to a perturbation. LLA allows to discover and
search for associations, predict probability of demand and fail
rates, prepare spare parts, and improve operational availability
and readiness.

Index Terms—supervised machine learning, predictive models,
unsupervised machine learning, lexical link analysis, LLA, as-
sociation patterns, data mining, maintenance and supply chain,
complex system, leverage artificial intelligence to learn, optimize,
and win, LAILOW

I. INTRODUCTION

A complex enterprise with multiple subsystems and organi-
zations is omnipresent. A Navy fleet is a complex enterprise
and the USMC maintenance and supply system is a complex
enterprise as well. A complex enterprise contains a myriad of
business processes as subsystems that can be either sequential
or parallel. A complex enterprise needs trusted AI to achieve
automation, foster collaborations, and win competitions. We
can leverage data sciences and advanced ML/AI techniques
for complex enterprises.

According to [1], [2], uncertainty, unknown operation
conditions are the key challenges for the U.S. Marine
Corps (USMC) maintenance and supply chain. For example,
the uncertainty of the reliability of assets (predicted fail-
ure/remaining useful life (RUL)) has caused the USMC to
maintain and operate with excess equipment and supplies.

Deep data analytics including machine learning (ML) have
been used by the USMC to address variety of challenges. For
example, predictive methods of supervised ML methods have
been used to predict equipment reliability and probability of
failure, therefore infer numbers of spare parts to improve stock
performance and synchronize budget execution.

It is imperative for USMC to adopt more advanced data
sciences including ML/AI techniques to focus on the entire
spectrum or end-to-end (E2E) logistic planning for the com-
plex enterprise of maintenance, supply, transportation, health
services, general engineering, and finance. The ultimate goal is
to enhance the total force readiness and project combat power
across the whole range of military operations and spectrum of
conflict at any time.

In this paper, we first review an overall framework of
leveraging artificial Intelligence to learn, optimize, and win
(LAILOW) for a complex enterprise, and then show how the
LAILOW framework is applied to the USMC maintenance
and supply system as a user case. The contribution of this
paper is that we show an unsupervised machine learning
method lexical link analysis (LLA) is powerful to discover
the associations and networks of items for a logistics and
supply system. We then show that the discovered associations
combined with the predictive models in a game-theoretic set
up of LAILOW propagates and reaches an equilibrium of total
item demand prediction for the whole system when a demand
perturbation to the system is introduced by high-impact and
low-occurrence items. The methodology can be extended to
other complex systems to predict stable states of a whole
system with subsystem interactions and dynamics.

II. LAILOW FRAMEWORK

A LAILOW framework can be summarized as follows:
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• Step 1 - Learn: LAILOW first learns patterns and rules
from historical data using data mining, big data, and
machine learning techniques. Patterns and rules describe
the correlations, associations, predictive patterns, or tran-
sition patterns among business processes and subsystems.
For example, A USMC’s unit structure includes a table
of organization and equipment and a large number of
items and parts to support the core equipment. Each
core equipment and parts has specific need for the (X)
duration and frequency of manpower and equipment
for maintenance. One should first perform data mining,
exploratory analysis, visualization, and causal learning
models to understand the time and processes needed
for maintenance services and pinpoint the causes for
high cost or slow processing areas such as failure rates,
demand patterns, or available manpower. The resulted
machine learning models can be then used for predicting
the desired effects for the future data.
A wide range of tools are needed to data-mine the
historical data to address the core attributes, for example,
the probability of fail (POF) of a part or equipment.
An unsupervised machine learning method called Lexical
Link Analysis (LLA) is used in this paper to discover
patterns of parts and items that are demanded together
which is related to POF. The patterns are developed into
networks and graphs for parts. The networks and graphs
can be then combined with predictive models to provide
a global, holistic, and associated view of spare parts
needed should one or multiple new conditions occur as
perturbations to the complex enterprise.

• Step 2 – Optimize: Based on the predictive patterns and
association patterns developed from Step 1, LAILOW
optimizes the measures of effectiveness (MOEs) or the
measures of performances (MOPs), defined by business
decision makers, by searching through better possible
courses of actions for future requirements.
For example, optimization methods have been used to
optimize and maximize the throughput capacity at each
node of the USMC maintenance and supply system to
match the combat power and readiness necessary. A
logistician/planner would have to assess the physical
network analysis (PNA) or also known as logistical
network analysis, to determine and predict the rate of
flow in various new operation conditions. Thus, planners
would be able to forecast better the rate of combat power
entering into an area of operation to avoid congestion or
delays in operations. Optimizing the stocking parts based
on the ML predictive maintenance models helps prevent
ordering surplus or unnecessary components for “just in
case” or better known as the Iron Mountain Concept [1],
[2].

• Step 3 – Win: LAILOW represents a complex enterprise
with a logistician/planner as a self-player in a game
environment in real-time and suggests winning actions
based on the nature of an opponent. The opponent can
be new environmental and/or operational conditions. This

requires war game type of ML/AI and simulation tools to
simulate the response in new environmental/operational
conditions.
This is also related to the Analysis of Alternatives (AoA),
conducted as simulations and what if analysis to create
added conditions for new USMC operational conditions
such as an IED blast, desert environment, and corrosion
considerations. In order to compute “delta” for replenish
based on the perturbations to the complex system, gath-
ered intelligence data, knowledge and rules from SMEs,
and existing predictive and engineering models can feed
to the system to provide extra data to predict such “delta.”
It is important to perform this type of AoA or simulations
or games since there might be no historical data available
for new conditions, traditional predictive modeling anal-
ysis might not be directly applicable. So LAILOW can
create such new conditions as an opponent to the self-
player of a war game to see how the predictive models
combined with association patterns of spare parts can
adjust better predictions for the new conditions.
Game theory and generative adversarial networks
(GAN) [3], [4] have been interestingly considered in
many commercial ML/AI applications such as generating
simulation and synthetic data that are not easily observed
in real life to improve the performances of ML/AI sys-
tems. Combined with simulation and war game tools as in
the LAILOW framework, it is possible to address, learn,
and self-practice the situations that are never seen before
such as uncertain, no data, and adversarial conditions for
a complex enterprise.

III. UNCERTAINTY, PERTURBATION, ASSOCIATION, AND
CASCADE EFFECTS

The probability of fail of a part can be affected by many
factors. We need to consider the uncertainty, disruption and
perturbation that can impact the logistics plans as a whole.
For example, uncertainty factors related to environment and
events in wide geographic areas, such as, weather change or
mission change from a path to another, or a sudden event can
cause a perturbation, disruption, and cascade effects for the
whole system.

The probability of fail is also embedded in a long chain
of historical maintenance and supply data. A failed part can
be fixed without ordering a new part. A part order frequency
or probability of demand (POD) in the historical supply data
reflects the demand if a part can not be repaired within a
certain period of time. The probability of demand (POD) in the
supply data can only reflect partial probability of fail (POF).
Sometimes, the business practice may also result in patterns
of POD that can not be explainable using POF, for example,
some USMC units may tend to order particular parts more
than other units.

The complexity of predicting total probability of fail for a
large list of the items calls for the integration of methods in
data fusion, data mining, optimization, and game theory when
facing particular uncertainty and perturbation. In this paper,
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we focus on the maintenance and demand/supply processes as
the relevance to the spare parts with an initial data integration.

IV. DISCOVERING ITEM ASSOCIATION NETWORK USING
LEXICAL LINK ANALYSIS (LLA)

A key contribution of this paper is to apply Lexical Link
Analysis [8] for predicting probability of demand (POD). LLA
is an unsupervised machine learning method and describes the
characteristics of a complex system using a list of attributes
or features, or specific vocabularies or lexical terms. Because
the potentially vast number of lexical terms from big data,
the model can be viewed as a deep model for big data.
For example, we can describe a system using word pairs
or bi-grams as lexical terms extracted from text data. LLA
automatically discovers word pairs, and displays them as word
pair networks.

Bi-grams allow LLA to be extended to numerical or cat-
egorical data. For example, using structured data, such as
attributes from the USMC maintenance and supply databases,
we discretize numeric attributes and categorize their values
to word-like features. The word pair model can further be
extended to a context-concept-cluster model [9]. A context can
represent a location, a time point, or an object shared across
data sources.

We use LLA for the structured data of the USMC main-
tenance and supply databases to discover associations among
items/parts in demand, therefore infer and predict the spare
parts needed to improve the total readiness level.

Fig. 2 shows conceptually how the associations and correla-
tions are discovered by LLA. We anticipate the demand change
(DC) for an item/part i might come from two types of sources:
Type 1): A collection of outside perturbations such as the
change of missions or new operational conditions; and Type
2): Item associations with other items where the associations
could be due to physical linkages or linked demand based on
past business practices. If an item i is ordered, item j is also
likely to be ordered in the same context. Type 2) DCs can
be mined from historical data. Type 1) DCs may come from
expert and engineering data, knowledge and simulations. As
shown in Fig. 1, both types of demand change have to be fused
into a stable new demand for all the items.

Fig. 1. LLA and probability of fail

In Eq. 4, Associj measures how strong item i and j are
demanded together. Probability and lift are the two measures
defined in Eq. (1) and Eq. (3) in LLA to measure the strength
of an association.

probij =
demand of item i, item j together

demand of item j
(1)

probi =
demand of item i

all item demands
(2)

liftij =
probij
probi

(3)

DC
(t+1)
j =

N∑
i=1

Associj ∗DC(t)
i (4)

In this paper, LLA is used to compute the association
network and graph, probij , and liftij from historical data.
When a new operation condition occurs (Fig. 2 1)) that causes
a demand change DCi for item i. DCi propagates through the
association network to affect the whole system.

A. Game-theoretic Framework of LLA

It is interesting to note that there is a game-theoretic
framework of LLA. If one item has a demand perturbation,
the total system can be stabilized using a game-theoretic LLA
as follows: Let the demand change vector for all item ~x for a
new condition that starts with an initial perturbation of all the
items in Eq. (5):

~x0 =


DC0

1

DC0
2

...
DC0

i

DC0
N

 (5)

And

~x =


x1
x2
...
xN

 (6)

is the changed demand for the whole complex system. Accord-
ing to the game theory, a fixed point or a Nash equilibrium [12]

Fig. 2. Total demand change (TDC) caused by new conditions and associa-
tions
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is achieved in Eq. (7):

A~x∗ = ~x∗, (7)

where A = 1
λmax

Assoc and Associj is the liftij matrix
computed from LLA in Eq. (3). The stabilized demand ~x∗

is the eigenvector of the maximum absolute eigenvalue of
A [11], [13]. λmax is the maximum eigenvalue of Assoc and
the maximum eigenvalue for A is 1. The demand change ~x0

propagates to the network of items. The final demand for all
the items can be expressed as in Eq. (8):

~xfixed =
√

(DC0
1 )

2 + (DC0
2 )

2 + ...+ (DC0
N )2


x∗12
x∗22

...
x∗i 2
x∗N2

 (8)

V. USE CASE

A. Initial Data and Pre-processing

Currently in the USMC maintenance and supply system, an
equipment or a part of an equipment fails, a service ticket
is opened. A service ticket is then been taken care of in a
long chain of actions such as to be replaced using spare parts,
or to be repaired in various echelons, or to be requisitioned
from the supply system. If an equipment or related parts can
not be repaired, they are ordered or requisitioned. The service
ticket is closed only when the equipment and parts are totally
ready and back to use again. Fig. 3 shows an example of a
service ticket. The time (usually days) between the open date
and close date of the service ticket indicates how long does it
take to make an equipment and associated parts ready to use
again through the maintenance and supply chain. An USMC
equipment is labeled using a table of authorized material
control number (TAMCN). A TAMCN is associated with a
set of parts specified using national stock number (RNSN).

To show the feasibility, we first fused data for a TAMCN
from a wide range of databases. The days between opened and
closed date for a service ticket is a derived attribute to measure
the effectiveness of the USMC maintenance and supply chain.
To look into how the days between opened and closed date
correlate with other attributes, we aggregated the data to the
service ticket number level with attributes related to 1) the
maintenance data such as service number, service request type,
defect code, operational status, echelon of maintenance, master
priority code, count of job status dates, count of service cross-
references, count of service parts, count of service activities,
count of task numbers, and 2) the supply data such as count
of RNSN, sum of part charge, count of document numbers,

Fig. 3. Initial maintenance data

count of last parts update dates, count of requirement numbers,
count of unit issue, count of item types, count of supply
route locations, and 3) the equipment usage data such as
owner unit address code, equipment operation time code, and
meter reading. They are all potentially correlate with the days
between opened and closed date. The sample data set contains
2065 service numbers/tickets and 599 (29%) of 2065 have the
days between opened and closed date more than 65 days (65
days is the mean of the days between the open and close dates
for the data set).

B. Supervised Machine Learning and Predictive Modeling

In this section, we show how to apply supervised machine
learning and predictive algorithms to predict, for a service
ticket, the probability of the days between opened and closed
date more than 65 days, based on other attributes. We use a
data mining and machine learning open source tool Orange [5].
Orange consists of a wide range of data mining and machine
learning algorithms including predictive models such as logis-
tic regression, decision trees, naı̈ve Bayes, random forest, and
neural networks.

A typical procedure in predictive modeling or supervised
machine learning is cross validation, which splits the data into
k folds and uses k–1 folds for training and the remaining fold
for testing (k = 20 in for our data). This procedure is repeated,
so that each fold has been used for testing exactly once. The
performance of the models is shown in Fig. 4. Among the var-
ious performance measures, an ROC curve is a graph showing
the performance of a model at all prediction thresholds. This
curve plots two parameters true positive rate (i.e., recall) as
y-axis and false positive rate (x-axis). The area under ROC
(AUC) provides an aggregate measure of performance across
all possible prediction thresholds. A perfect predictive model’s
AUC is 1. The classification accuracy (CA) measures correctly
predicted cases for all the classes if the predicted class has the
highest predicted probability.

The precision is the fraction of the instances which are
indeed positive out of those that are predicted positive. The
recall is the fraction of the instances which are predicted
positive out of those that are indeed positive. The F1 score
is the harmonic mean of precision and recall. The Random
forest has the best F1 score as shown in Fig. 4 for the data
set compared to the other predictive models.

The confusion matrix gives the number/proportion of cases
between the predicted and actual class as shown for the
predictive decision trees in Fig. 5.

Furthermore, for supervised machine learning and predictive
models, a lift curve shows the relation between the number of
cases (i.e., service tickets) which are predicted positive (i.e.,
a service ticket closes more than 65 days) and those that are
indeed positive and thus measures the performance of a chosen
classifier against a random classifier (the straight line in Fig. 6.
The graph is constructed with the cumulative number of cases
in descending order of the predicted scores (i.e.,the predicted
probability of a service ticket closes more than 65 days) on the
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x-axis and the cumulative number of true positives on the y-
axis (recall). Lift curve allows to prioritize the cases based on
the predicted scores. Fig. 6 shows lift curves for the predictive
models (i.e., logistic regression, decision trees, naı̈ve Bayes,
random forest, and neural networks) tested for the data set.
Logistic regression has the best lift curve compared to the
other predictive models in Fig. 6.

While many supervised machine learning and predic-
tive algorithms such as neural networks are criticized be-
ing black boxes and not explainable, some do provide
better explainable AI (XAI [10]) features, for example,
Fig. 7 shows a visualization of the predictive decision trees
with rules specified in each leaf of the tree. An exam-
ple rule reads “If count requirement number > 0 and
count last update date parts > 3, then 78% (199 out of
255) of the service tickets close more than 65 days.” The
rule has a statistical significance p < 0.0002 as seen when
comparing with the rate 29% (599 of 2065) in the population

Fig. 4. Orange prediction accuracy for predictive algorithms using cross-
validation k = 20

Fig. 5. Orange confusion matrix for the decision trees predictive algorithm

Fig. 6. Orange lift curve shows

as a whole (random guess), the lift is 2.69.

C. data-mining Association Patterns and Networks Using LLA

Next, we applied LLA to data mine associations among
the part failures within the same contexts, i.e., the same open
dates. As shown in Fig. 10, we first used LLA to group all
the parts (labeled by the RNSN numbers and NOMENCLA-
TURE) based on the service ticket number. We also attached
information that if a ticket closed more than 65 days and if
there is an indication of spare parts used for the ticket. Each
row represents all parts needed within the same ticket. There
are total 1240 tickets in the data set with the RNSN numbers
and NOMENCLATURE. In other words, 60% (1240/2065) of
service tickets required requisitions of parts.

We applied LLA to compute pair-wise parts associations,
i.e., the parts that are needed/ordered/demanded in the same
service ticket. Associated spare parts might be stockpiled in the
same manner should one fail suddenly in a new and disrupted
condition.

As shown in Fig. 8, LLA generated so-called themes – Each
theme is a cluster of parts that appeared together in more than
one service ticket. The association strength is measured by the

Fig. 7. Decision tree rules visualization shows how an example of explainable
AI

Fig. 8. Themes discovered by LLA
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“lift” measure (similar to the meaning of the lift curve in the
predictive models in Orange) described in Equation (3).

Fig. 9 shows associated parts in Group 12.
Part 5120002370977 socket socket wrenc and
8415010920039 mitten heat protect have a link strength
lift = 82.7 because they were serviced 4 times together
while 8415010920039 mitten heat protect was serviced
5 in total and 5120002370977 socket socket wrenc was
serviced 12 times in total among a total service number
of 1240, therefore, the lift is 82.7=(4/5)/(12/1240). In
other words, when 8415010920039 mitten heat protect
was serviced (i.e., ordered or requisitioned), 80%
of the time 5120002370977 socket socket wrenc
was also serviced, which is 82.7 times of
5120002370977 socket socket wrenc’s service in the
whole data set (12 of 1240). Total service demand of
5120002370977 socket socket wrenc may be caused by

Fig. 9. LLA Group 12 lift: Associated parts in Group
12. Part 5120002370977 socket socket wrenc and
8415010920039 mitten heat protect have a link strength
lift = 82.7 because they were serviced 4 times together
while 8415010920039 mitten heat protect was serviced 5 in
total and 5120002370977 socket socket wrenc was serviced
12 times in total among a total service number of 1240,
therefore, the lift is 82.7=(4/5)/(12/1240). In other words, when
8415010920039 mitten heat protect was serviced (i.e., ordered or requi-
sitioned), 80% of the time 5120002370977 socket socket wrenc was also
serviced, which is 82.7 times of 5120002370977 socket socket wrenc’s
service in the whole data set (12 of 1240).

Fig. 10. LLA association input data

services of all other associated items as shown. Should
an item’s demand changes in a new operation condition,
associated items may demand even more in the new condition.

Fig. 11 shows a ground truth POD computed using the
number of service tickets demanded for a part (e.g., 12 for
5120002370977 socket socket wrenc) divided by the total
service tickets (i.e.,1240). We computed Eq. (7) and Eq. (8),
and the correlation to POD is plotted in Fig. 11. The Pearson
correlation is 0.13 (p=0.025). The centrality measure of total
degree [6], [11] computed from LLA has the correlation 0.32
(p < 0.0001) with POD as plotted in Fig. 12. Both correlations
are statistically significant, while the total degree measure has
a higher correlation. Fig. 13 shows an example of predicted
POD sorted based on either of the two scores. In a summary,

Fig. 11. POD sorted using max eigenvector scores

Fig. 12. Correlation between POD and total degree scores from the LLA
parts association network

Fig. 13. Eigenvalue-sorted items

683



the association network and derived attributes such as total
degree centrality can be used to predict POD, POF, infer
needed spare parts, and reduce maintenance and supply delays
together with other attributes and databases.

VI. CONCLUSION

We showed a use case for a generic framework of LAILOW
in detail in the context of the USMC maintenance and supply
big data and complex system. We used LLA to compute
stable and sensitive components of a complex system with
respective to a perturbation. LLA allows discover and search
for item associations that can be used to improve predicting
the demand, prepare spare parts, and improve operational
availability and readiness. The future work is to test the
LAILOW framework for more database integration (e.g.,
equipment movement and usage, manpower, engineering, and
transportation databases), more core equipment of the USMC,
and perform simulations/games of new operation conditions
and cascade effects.
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