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Abstract—An efficient iris sensor identification algorithm can
be used in certain forensic applications, i.e. detecting mislabeled
iris data at large scale iris datasets, and verifying the validity of
the data origin of collected iris datasets that are available to be
shared. Such knowledge can potentially increase the overall iris
recognition system accuracy by offering the operator the option
to match same-sensor or cross-sensor iris images. In either case
the knowledge of the origin of the sensor used to collect these
data, when not available, or the correction of mislabeled data,
is expected to result in higher iris matching accuracy. Another
benefit of iris sensor identification is that it can assist in improv-
ing the detection of fake iris data, i.e. when knowing the iris
sensor, we can apply more appropriate models for fake detection
that are tuned for a specific iris sensor. In this paper we propose
an efficient deep learning-based iris recognition algorithm that is
sensor inter-operable. Our approach utilizes a moderate amount
of data and is adaptable to learning rate variations as well as
variations of the amount of data used for training per class. Our
proposed approach uses a set of iris datasets that include iris
images captured at different standoff distances. We are using
the original captured, dual eye, or periocular images rather than
the iris itself, after detecting, segmenting, and normalizing the
iris. Thus, the algorithm is efficient, fast, and less depended
on additional algorithmic processes that can add computational
complexity. Our proposed process includes transfer learning
using iris images of higher quality via the utilization of a set
of image quality metrics and achieves close to a hundred percent
accuracy after cross-validation.

Index Terms—Iris Sensor Identification, CNN, Transfer Learn-
ing, AlexNet, GoogLeNet, SGDM, Iris Sensor Inter-operability

I. INTRODUCTION

Iris is among the most interesting biometric modalities. Iris
recognition systems can be highly accurate as the iris features
are unique from person to person. No two human iris patterns
are same, not even in twins [1]. In many security related
applications, where a highly efficient access control solution
is needed, iris recognition systems are preferred to be used
either independently or as part of a multi-modal biometric
verification system.

While large number of iris recognition solutions are avail-
able, one of their challenges is that iris images can be captured
using different imaging sensors. Thus, the issue of sensor
interoperability can emerge, where some users may have

(a) Iris Interval (b) Iris Lamp (c) Iris M1 S1

(d) Iris M1 S2 (e) Iris M1 S3

Fig. 1: Large scale iris datasets when captured with multiple
sensors - can suffer from cases of iris sensor mislabeling. In
this example we show how onerous it is to manually check and
verify the validity of the data origin of collected iris datasets
when capturing using multiple iris sensors.

enrolled using one iris sensor, while matching is performed
with their live iris counterpart captured by another sensor. In
such a case, we are performing iris cross-sensor matching,
which can lower the efficiency of the iris recognition system
in terms of its accuracy. This cannot be avoided if we do
not know for sure the correct origin and thus, label of the
available iris images we have available before matching. Thus,
a capability to automatically determine the identity of an iris
sensor from labelled or unlabeled iris images can be beneficial
in many ways.

One of the challenges is that iris images are captured in
the visible and near infrared bands via the same or different
band-specific sensors. Thus, they differ due to the wavelength
used, hardware related features and the illumination used while
capturing the images [1], [2]. However, it is not always certain
that we will have the correct label of each iris image captured.
Another issue is that sensor features may differ even withinIEEE/ACM ASONAM 2020, December 7-10, 2020
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different camera models produced by same manufacturer [3].
So, in certain scenarios the amount of intra-class variation
can be unavoidable, raising the requirement for sensor inter-
operability.

Camera sensor recognition has also been studied for other
biometric modalities such as fingerprint [4], voice, face [5]
and one common conclusion is matched that the knowledge
of the iris sensor used to capture an image helps the operator
utilizing the proper models and algorithm [6]–[8].

In this paper we propose an efficient, deep learning-based,
iris recognition algorithm that is sensor inter-operable. Our
approach utilizes a moderate amount of data and is adaptable
to learning rate variations as well as variations of the amount of
iris images used for training per class. Our proposed approach
uses a diverse iris dataset that include iris images captured
at different standoff distances. Specifically, we are using a
multi camera iris database collected from CASIA [9], and train
the network sequentially with 300, 600, 900, 1200 and 1400
images per class. Also, we are using the original captured,
dual eye, or periocular images rather than the iris itself, after
detecting, segmenting, and normalizing the iris. The proposed
algorithm is efficient, fast, and less depended on additional
algorithmic processing that can add computational complexity.
Also, our proposed process includes transfer learning - after
we explored using different pre-trained models, we concluded
that AlexNet and GoogLeNet result in the highest iris sensor
identification accuracy. Finally, the usage of higher quality
iris images via the utilization of a set of image quality
metrics, yields close to a hundred percent accuracy after cross-
validation.

The rest of the paper is organized as follows: Section 2
discusses previous works related to sensor interoperability,
Section 3 and 4 discuss the methodological approach and
experimental results, respectively. Limitations of this research
is discussed in Section 5. Section 6 encompass the conclusions.

II. RELATED WORK

Sensor interoperability research has been explored ex-
tensively for its vivid importance in forensics, bio-metrics
verification, and others. While multiple solutions have been
proposed, there have been several approaches adopted to find
the exact camera model used starting from finding specific
marks in the images [10]–[13].

Kirchner et al. [14] adopted a blind approach by extracting
expressive texture-based features from the images that are used
for training a classifier. The aim was to take advantage of the
micro-pattern differences between the images captured with
different camera sensors. In their algorithm they applied a
high-pass filter to the data, which helped exploit the sensor
related content that is useful for the texture classification
approach.

Galdi et al. [13] used the sensor noise pattern for sensor
identification. Such patterns are widely used in Photo re-
sponse non-uniformity (PRNU) sensor recognition [15], [16].
Although this approach seems to be promising, it may be
challenging to verify its efficacy as it is time consuming and

needs a large number of images captured by individual sensors.
This complicates the design of such an approach when we
would also need to consider many sensors in combination with
a large number of images needed from each sensor so that the
sensor identification approach can work efficiently.

Celiktutan et al. [17] used different color bands to extract
image quality metric (IQM) based features and combined them
with Local Binary Patterns (LBP), extracted from the least-
significant bit planes [18]. Gloe et al. [19] used additional color
features and was able to improve the overall performance of
their proposed system when compared to Xu et al. [20].

Recently, CNN based approaches have also been proposed
to solve the sensor identification problem. Examples include
the work at [21] with which Qian et al. [22] added a high-pass
filter layer to extract features from the residuals of the images
and, thus, reduce the overall complexity of the deep learning
network.

III. METHODOLOGY

In this section, we discuss all the steps of our proposed
approach as illustrated in Fig 3. First, each image is pre-
processed by resizing it according to the input specification of
the proposed network. After resizing, an image quality metrics
is generated from all the images to choose the images needed
to perform the experiment, as we choose the same number of
images from each class for every experiment performed. Then,
the images are divided into two sets: 90% for training and
10% for testing. Next, feature extraction is performed before
training and validating the classifiers used to determine which
sensor is used to capture the iris image in question.

A. Data Preprocessing

For this research, we are using five different classes of iris
image datasets captured with five different cameras. Individual
images in each class differ in size and number. For using a
specific CNN architecture, all the images used in a dataset
must be of same size, which is the exact input size of the
network.

Thus, before the training phase starts, we need to make
sure that all the images are converted to the exact input size
of the network. For AlexNet the input images must be of size
227×227×3. Thus, we resize the data to be of the exact same
input size to fulfil the requirement of the network selected.

B. Image Quality Metrics

We have been working with five sets of images from CASIA
Iris datasets. Each set of images comes with different numbers
of images, ranging from 1,400 to 20,000 images. For main-
taining the regularity of the classification process, we choose
same number of images per class. We run the experiment
by choosing the images randomly as well as choosing better
quality images to check whether the accuracy differs when
compared to lower quality ones. Image quality can depend on
several features of an image like noise, ringing, blurring and
compression artifacts, thus being able to objectively measure
the quality of an image is very important. As we choose
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Fig. 2: Deep learning-based architecture followed to perform
the experiment, where the first convolution layer consists
256 3×3 filters and the following two convolutions has 384
filters each. Max pooling 2×2 reduces the image size by one
forth consisting only the most prominent features. The later
convolution layers have 256 and 96 filters respectively where
the size of the filters changes to 11×11.

to select the same number of images for each class, we
measure the quality of images and choose the highest quality
images per class to conduct the experiments. We generate no-
reference-based image quality metrics with Blind/Reference-
less Image Spatial Quality Evaluator (BRISQUE). A brisque
model is trained with a set of images with known distortion.
We choose the highest quality images by generating a model,
first, and then check the classification accuracy both with and
without using a model. BRISQUE is limited to evaluating
the quality of images with the same type of distortion. In
BRISQUE there is a subjective quality score that accompanies
the training images, which is predicted by using a support
vector regression (SVR) model trained on the set of images

with corresponding differential mean opinion score (DMOS)
values. For generating these values, the compression artifacts,
blurring, and noise are generated for the entire image database.
The lower the BRISQUE score, the better the quality of that
image is.

C. AlexNet Architecture

AlexNet was first introduced with the idea of implementing
deep learning onto massive real-life datasets. Convolutional
Neural Networks (CNN) being easy to control and train,
has been the go-to model for object detection [23]. For vast
datasets like ImageNet, it was needed a system to work
smoothly with GPUs, provide with optimized training time
and better performance.

It is eight layers deep (Fig: 2) convolutional neural network
including input and output layers. Among those eight layers,
five are convolutional layers and three fully-connected layers.
There are some features which make AlexNet special and
are new approaches to convolutional neural networks. Use of
Rectified Linear Units (ReLU) instead of the tanh function
reduces the training time by six times for the CIFAR-10
dataset. AlexNet was the first one introduced to train larger
models by allowing for multi-GPU training.

To do so, it puts half of the model’s neurons on one GPU
and the other half on another. By introducing pooling overlap
AlexNet could reduce the error by about 0.5% and found that
models with overlapping pooling generally find it harder to
overfit. Thus, while an older architecture, it is still a powerful
model capable of achieving high accuracy on very challenging
datasets.

D. GoogLeNet Architecture

GoogLeNet is known for reducing error rate to a good extent
compared to AlexNet and other state-of-the-art architectures
[24]. It is a 22 layers deep network with input image size
224-by-224-by-3. GoogLeNet uses global average pooling as
a final layer. These are known as inception modules allowing
one to let the network decide whether it wants to pool or
convolve. In earlier layers auxiliary classifiers are applied to
stabilize the gradient. So, this feed-forwarding idea helps one
to figuring out a preliminary classification thus allowing it to
bring in the loss at an early stage. So, the deeper network
helps to get a vanishing gradient, which is mollified with the
auxiliary classifiers. Thus, this feed-forwarding characteristic
allows one to decide on the number of inception modules.

The inception module is a combination of multiple 1×1, 3×3
and 5×5 convolution and/or max pooling. These branches are
set parallel and then the output is concatenated towards the
next layer. This is how the network decides which branches’
output could be trusted in the next layer and, thus, which
pooling, or convolving is decided.

E. Selecting Pre-trained Model

In this research we use transfer learning by choosing a
suitable pre-trained model and training that with our datasets.
Here we have used the CASIA iris dataset, versions 1 and
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Fig. 3: Our proposed methodology includes transfer learning using iris images of higher quality via the utilization of a set of
image quality metrics and achieves close to a hundred percent accuracy after cross-validation.

4, to train the following two networks, namely GoogLeNet
and AlexNet, which have reputation in yielding high accuracy
classification rates.

GoogLeNet has 4 million parameters compared to
AlexNet’s that has 60 million. Thus, for the dataset sizes at
hand, we empirically experimented which ones perform better
with respect to time and accuracy. For this research, we trained
both the networks with our data and run a set of experiments.
Both networks yield similar accuracy after we apply image
quality metrics. However, the former network is much more
time consuming. Considering the high amount of time taken
by GoogLeNet, we chose AlexNet to be more suitable for this
research.

F. Training Through Transfer Learning

We have employed the MATLAB Deep Network Designer
and Experiment Manager App to train the AlexNet network
for this research. We split the datasets into 90% for training
and 10% for testing and repeat the same experiment for
different numbers of images (such as 300, 600, 900, 1200
and 1400) every time. The learning rate we chose ranges
from 0.001 to 0.007 with a maximum of 10 epochs and
trained through a mini batch size of 32. The experiments are
defined as a five-class problem where each class represents
individual camera sensor accepting near infrared technology,
including OKI IRISPASS-h, CASIA close-up camera, CASIA
NIR mobile V1 and V2 and a domestic mobile phone.

We choose the training option as Stochastic Gradient De-
scent with Momentum (SGDM) for optimizing the network.
SGDM is known to be very effective for converging very faster
by accelerating gradients vectors in the right directions.

IV. EXPERIMENTAL RESULTS

A. Datasets

We evaluate the proposed method by applying it to CASIA
IRIS datasets. For this research we used CASIA-Iris-Mobile-
V1.0 and CASIA-IrisV4 datasets, which are available online.
CASIA IRIS dataset version 1 and 4 includes a total of
nine sets of different iris images. CASIA-Iris-Mobile-V1.0
contains a total of 11,000 images from 630 Asian subjects. It
includes three subsets based on three different mobile devices

identified as S1, S2 and S3. All images were collected under
NIR (Near Infrared) illumination and two eyes were captured
simultaneously. Images are 8 bit gray-level files stored as JPG
format.

CASIA-IrisV4 comprises of six subsets with a total of
54,607 iris images from more than 1,800 genuine subjects
and 1,000 virtual subjects. All iris images are 8 bit gray-
level JPEG files, collected under near infrared illumination or
synthesized. In Table I we do the listing of all five models used
in this research with their characteristics such as number, size,
features etc. In the Fig. 1 we show the images coming from
each individual datasets used. The datasets characteristics are
discussed further below.

1) CASIA-Iris-M1-S1: Images in this dataset are pictured
using the NIR iris imaging module consisting of an NIR
camera and multiple NIR illuminator. Its small size (about
5cm×2cm×1cm) makes it easier to attach to a mobile phone
through a micro USB port. These images are captured from
about 25cm standoff distance and the resolution of the iris
images is 1080×1920.

2) CASIA-Iris-M1-S2: Images in this dataset are pictured
using an improved NIR imaging module (CASIA NIR mobile
module V2). Images captured in this dataset are of 200 Asian
subjects and they are collected from three different standoff
distances (20cm, 25cm and 30cm, respectively), where 10
images are collected from each distance. The resolution of
the iris images is 1968×1024.

3) CASIA-Iris-M1-S3: Images in this dataset are pictured
using a domestic mobile phone with NIR iris scanning technol-
ogy. Images captured in this dataset are of 360 Asian subjects
and the resolution of the iris images is 1920×1920.

4) CASIA-Iris-Interval: Images in this dataset are pictured
using a close-up iris camera developed by CASIA. They claim
that this camera can capture very clear iris images, which
makes it very suitable for studying the detailed texture of
iris images. The resolution of the iris images is lower than
those captured by the other iris sensors discussed above, i.e.
320×280.

5) CASIA-Iris-Lamp: Images in this dataset are pictured
using a handheld iris sensor produced by OKI. While capturing
these images a lamp was turned on and off. The resolution of
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Fig. 4: Different sets of images coming from same subject per set but captured with different sensors

TABLE I: A summary of the characteristics of all iris datasets used in this study.

Subset Characteristics CASIA-Iris-M1-S1 CASIA-Iris-M1-S2 CASIA-Iris-M1-S3 CASIA-Iris Interval CASIA-Iris Lamp

Sensor CASIA NIR mobile
module V1

CASIA NIR mobile
module V2

A domestic mobile phone
with NIR iris-scanning

technology

CASIA close-up iris
camera

OKI IRISPASS-h

Environment Indoor Indoor Indoor Indoor Indoor with lamp on/off

Attributes of Subjects Most are graduate
students of CASIA Most are workers Most are students of

China
Most are graduate
students of CASIA

Most are graduate
students of CASIA

No. of Images 1400 6000 3600 2639 16212
Resolution 1080×1920 1968×1024 1920×1920 320×280 640×480

Features The first NIR mobile iris
dataset

Images are collected at
three different distances

(20, 25, 30 cm)

Images are captured by a
mobile phone. The

number of subjects is the
largest

Cross-session iris images
with extremely clear iris

texture details

Nonlinear deformation
due to variations of
visible illumination

the iris images is lower than those captured by the other iris
sensors discussed above, i.e. 640×480.

B. Classification and Model Validation
We train the network with MATLAB Experiment Manager

and choose the training parameters. We evaluate the result
of classification with a loss function graph. A loss function
represents an amount of wrong prediction in a classification.
In Fig. 5 it is shown that with the increase of epochs the loss
function values become lower and the system converges after
second epoch.

In the box plot shown in Fig. 7 we show the accuracy at
every step. The entire box plot ranges in one point which
is 100% and the minimum outlier value is 99.333% for 300
images per class and 20% for 900, 1200 and 1400 images per
class. There is no outlier for 600 images per class. Analyzing
the box plot, image quality metrics plays a vital role in
selecting better quality images, thus making it convenient to

perform the experiment with lower number of images per
class. It saves both time and computational complexity of the
experiments.

The confusion matrix shown in Fig.6 also shows similar
characteristics thus ensuring the high accuracy of our proposed
method.

Providing the efficiency of the algorithm proposed in this
research, we further investigate with different numbers of
images per class and with learning rates ranging from 0.001
to 0.007 with the increase of 0.002 at every step. We observe
that the number of images per class has much less to do
with the accuracy when the learning rate is inclined towards
the smallest number selected empirically. However, when the
learning rate is 0.005 or 0.007 the accuracy fluctuates. Fig. 8
shows three ROC curves where the area under curve (AUC) is
0.5 when the learning rate is 0.005, whereas both for learning
rates 0.003 and 0.001 the AUC is exact 1. Figures shown
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Fig. 5: Loss function showing the loss of accuracy is zero after second epoch.

Fig. 6: Confusion matrix shows that the accuracy for sensor
identification using AlexNet is 100% for the five datasets used
in this research. The Vertical class names here represent true
classes and the predicted classes are shown horizontally.

Fig. 7: The box plot above shows the distribution of accuracy
for every epochs for different size of datasets used. This shows
that our experiment can give better results with smaller amount
of data. Although the results for larger datasets are showing
some outliers much different than the mean, they occur when
learning rate is larger than 0.004.

in here represent the number of images per class as 300.
Repeating the experiment for number of images per class as
600, 900, 1200 and 1400 only bolsters this claim.

V. LIMITATIONS AND FUTURE WORK

We have come across some literature [25] mentioning
CASIA version 1.0 data set being edited in the pupil area
thus referring not to use that in any bio-metric research. Here
in this research, we are not doing any human identification for
which the above concern might be an issue. The purpose of
this research is to solely focus on identifying image sensor,
for which editing an image to some extent should not effect
the signature of the sensor used to capture the image.

We would like to expand our research to combining multiple
biometric data (face, iris, fingerprint) together with different
types of sensor data for the same people to investigate the
relation between those characteristics and the sensor influence.
We also want to elaborate our research with more pre-trained
models solely based on mobile phone images as there is a lot
of active research and interest capturing and processing mobile
phone biometric data these days.

VI. CONCLUSION

Sensor interoperability is very important in multiple fields,
from data organization to forensics [14] and security. This
issue might be particularly important for large bio-metric
systems, where there must be several sensors involved. Here
in this paper we propose a method to choose highest quality
images to train popular pre-trained deep learning models.

For performing this research, we used datasets from CASIA
iris datasets, version 1 and 4. We choose 5 sets of images,
find the best quality images from each dataset by applying
image quality metrics, trained a transfer learning model and
yielded close to 100% accuracy. This methodological model
can be extended to more complex biometric research problem
related to the need to understand the sensor origin of different
biometric data.
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(a) ROC for learning rate 0.005

(b) ROC for learning rate 0.003

(c) ROC for learning rate 0.001

Fig. 8: The AUC in ROC curves above represent the classifier
performance indicating that the lower the learning rate, the
better the accuracy is.
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