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Abstract—Emerging methods for content delivery such as
quote-searching and entity-searching, enable users to quickly
identify novel and relevant information from unstructured texts,
news articles, and media sources. These methods have widespread
applications in web surveillance and crime informatics, and can
help improve intention disambiguation, character evaluation,
threat analysis, and bias detection. Furthermore, quote-based
and entity-based searching is also an empowering information
retrieval tool that can enable non-technical users to gauge the
quality of public discourse, allowing for more fine-grained analy-
sis of core sociological questions. The paper presents a prototype
search engine that allows users to search a news database
containing quotes using a combination of strings and things.
The ingestion pipeline, which forms the backend of the service,
comprises of the following modules i) a crawler that ingests data
from the GDELT Global Quotation Graph ii) a named entity
recognition (NER) filter that labels data on the fly iii) an indexing
mechanism that serves the data to an Elasticsearch cluster and
iv) a user interface that allows users to formulate queries. The
paper presents the high-level configuration of the pipeline and
reports basic metrics and aggregations.

Index Terms—Elasticsearch, search engine, Named Entity
Recognition, quote-searching, crime informatics

I. INTRODUCTION

Quotations by prominent personalities, institutions, office-
holders, and organisations are often the source of great interest
for researchers and investigators seeking to explore an issue
in greater depths. Quotations can also help everyday internet
users select the right platform for their daily entertainment and
news consumption.

However, discovering who said what, when, and where is a
very challenging task for both humans and machines, that can
lead to misquotation [1], ambiguity [2], [3], and eventually
lack of trust amongst the public [4]. Public statements given
by elected officials, public figures and community leaders
have a long-lasting socio-economic impact and are more
likely to be widely reproduced in news and social media.
Misquotations and spurious sayings are rampant in public and
political discourse, especially in the online era where news
and opinions are being generated, shared and reproduced at a
staggering speed [1]. A testament to this is the rapid growth
of disinformation and the urgent calls for regulatory action
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seeking to build more sustainable and trustworthy information
sharing ecosystems [5].

The article presents a prototype search engine1 that allows
users to query a database that contains quotations taken from
news articles, using both strings and things. The implementa-
tion of the search engine has four core modules (Table 1). First,
a module that develops and deploys a web crawler to ingest
data from the GDELT Global Quotation Graph [6]. Second,
a filter that augments the collected data by passing text fields
through a default spaCY Entity Recognizer model [7]. Third,
an Elasticsearch [8] cluster that indexes the annotated data
and allows to run backend queries and aggregations. Finally,
a module that setups the necessary web infrastructure, enabling
requests from clients via a front-end using Flask [9] and
NGINX [10]

TABLE I
TECHNOLOGY STACK USED TO BUILD THE SEARCH ENGINE

Tools Description
Crawler Custom crawler that pulls data from the GDELT API.
Analyser Custom analyser/filter that applies a vanilla spaCY Entity

Recognizer model on the GDELT data in near real-time.
Indexing Custom Elasticsearch cluster that can handle high throughput

indexing jobs.
Front-end A custom application front-end using Flask and NGINX

frameworks on Ubuntu to enable requests from clients.

II. RELATED CONCEPTS

The aim of this section is to provide a brief background
about the key industry trends and developments in the field
of quote-based searching. The section also outlines the core
technologies and data sources used in developing our solution.

A. Quote-based Searching

In 2014 Yahoo! Inc. was granted a patent by the United
States Patent and Trademark Office (USPTO) for a solution
called “Quote-based search” [11] enabling users to use string
queries for searching a quote index. The proposed system uses
a database comprised of documents that include quotes. User-
defined queries can return relevant quotes along with other
attributes such as keywords, topics, and entities. Similarly,
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in 2017 the USPTO granted a patent to a team of Google
engineers who developed a novel method for searching quotes
that pays attention to the entities of a query using an entries
knowledge graph [12]. The patent “Systems and methods for
searching quotes of entities using a database” seeks to identify
entities associated with a string query as well as develop a
database to identify a set of quotes corresponding to a given
search. It appears that this patent is currently used to retrieve
quotes shown in the “knowledge panel” usually featured in
the right hand side of the Google search results. In 2019 the
solutions was updated with a continuation patent that focused
on analysing audio content to identify quotations in audio and
video files [13].

The GDELT Global Quotation Graph [6] is an open source
project that has developed tools that scan news articles and
then detect quoted statements from a vast number of sources
with worldwide coverage. Overall, the Global Quotation Graph
provides documents that include quotations in context taken
from online news articles in 152 languages since January 1,
2020. The documents are freely available online and updated
every minute, while the compressed files become available
for crawling on a 15 minute heartbeat. The dataset contains
JSONL documents that can include one or more quotations,
and each row includes structured information extracted from a
single article. Table 2 presents the key-value pairs found in the
GDELT JSONL files. Next, we turn to review formal methods
for indexing and searching text-based datasets.

TABLE II
GDELT GLOBAL QUOTATION GRAPH VARAIBLES

Key Description
date The date and time the article was last seen and indexed by

GDELT.
url The full URL of the article.
title The title of the article.
lang The human-readable name of the language the article is

primarily written in. Articles with multiple languages will
be listed under the primary language. Language detection is
performed by CLD2 and will have a certain level of error.

quotes An array containing one or more quotations identified in the
article.

pre A brief snippet of text preceding the quotation up to 100
characters to assist with speaker identification. This ranges in
size based on the article language and linguistic queues and
will typically be shorter than 100 characters.

quote The actual quoted statement itself.
post A brief snippet of text following the quotation up to 100

characters to assist with speaker identification. This ranges in
size based on the article language and linguistic queues and
will typically be shorter than 100 characters.

B. Quote indexing & Analytics with Elasticsearch

First released in 2010, Elasticsearch is a battle-tested dis-
tributed and open source search and analytics engine, which
is built on Apache Lucene and can index both structured and
unstructured data and texts [8]. At a high level, indexing
documents in Elasticsearch requires the use of a schema
(mappings) that essentially describes how fields within JSON
documents should be handled, processed, stored and indexed.

Thus, mappings are configured to correctly identify fields that
should be indexed as text, numbers, dates, geo-locations, and
date formats. While the default mapping of Elasticsearch is
schema-less, users can install various plugins to customise
this mapping with various analyzers and settings for index-
ing and searching more complex data [14]. With regards
to text augmentation, the mapper-annotated-text plugin [15]
developed by Mark Harwood, is a recent feature that can be
used in conjunction with a named-entity recognition (NER)
script, allowing for additional tokens to be injected into the
token stream at the same position within a given sentence
where the target text is annotated. For instance, using this
markup feature, the sentence “Investors in APPLE rejoiced”
will be enhanced and also include the following NER tags “In-
vestors in [APPLE](APPLE&PERSON) rejoiced”. Evidently,
if integrated into a search engine service, this approach can
provide added value for non-expert researchers. Take for
example the problem of evaluating the cost of illicit drugs
over time, a task that requires extensive searches, manual
annotation, and technical skills. Using the proposed approach,
this problem is easily broken down to the following string
query “cocaine + [MONEY]”, returning results that mention
cocaine in addition to other text that contain monetary or other
financial information such ac the street value of drug seizures
or cash and property seized.

While indexing large scale textual data using the mapper-
annotated-text plugin [15] enables users to run concurrently
queries that include both strings and things, this approach
also enables novel and memory efficient ways to analyze large
corpora. Specifically, Elasticsearch has built-in aggregations
that can be used for both backend analytics and frontend
services (e.g. search as you type features). With regards
to text aggregation, one might be interested in identifying
popular and/or significant terms within a given index/corpus.
Aggregation functions for popular terms count how many
times specific tokens appear in the index. Combined with the
mapper-annotated-text plugin, a simple terms aggregation [16]
can gauge the overall popularity of various named entities
across documents. Additionally, the significant text aggrega-
tion [17] identifies unusual and interesting term occurrences in
the data that can be used to suggest relevant terms/documents
associated with a user-defined query (e.g. similar, but not
the same). For instance, the significant text aggregation for
the query “Bird flu” is able to return search terms such as
“COVID-19”, “Influenza”, “H5N1” therefore promoting users
to explore new search paths. The next section presents the
core modules and cloud infrastructure of the ingest pipeline
that was deployed to index data into Elasticsearch.

III. METHODS AND MODULES

Regarding cloud infrastructure, the pipeline was first tested
and developed in a local installation of Elasticsearch 7.7, and
was subsequently lunched as a cloud service on the CSC
cPouta environment [18]. The latest version of the search
engine was set up on top of 5 Ubuntu 20.04.1 LTS Virtual
Machines running on an OpenStack implementation. All nodes
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run Elasticsearch 7.7. and are identical in terms of config-
uration and settings (62GB RAM, 8 VCPU, 80GB Disk).
Indexing was performed on a custom Elasticsearch cluster
comprised of 2 master-eligible nodes, 3 data-eligible nodes, 1
dedicated ingestion node and 1 dedicated management node.
Furthermore, Logstash [8], Prometheus [19] and Kibana [8]
instances were used to monitor and visualise cluster metrics.
The Kibana dashboard and the frontend are supported by an
NGINX [10] reverse proxy exposed to a public IP , while
REST requests are handled via a Flask application [9]. The
ingest pipeline was implemented using a series of Python3
functions shown bellow:

• Index settings and Mapping: Using the Python Elastic-
search API [20] we first create an index and then config-
ure the desired index settings, analyzers, and mapping. In
the settings block, we import the analyzer shingle with
max/min size 2, along with the standard tokenizer in order
to create word n-grams. In effect, using shingle we can
convert a stream of tokens into new tokens by concate-
nating adjacent terms creating 2-grams. Subsequently, in
the mapping block, we import the annotated text [15] that
enables us to inject the NER marked-up annotation tokens
directly into our token stream. Eventually, the augmented
data are added into the new fields of the type keyword
and annotated text. Fig 1. shows the annotated index of
a document that matched a queried using a combination
of strings and NER tags (bomb + FAC).

• Get entities: The detection of named entities is
achieved through a vanilla implementation of the spaCy
en core web sm model [7]. Once the crawler starts in-
gesting data into the Elasticsearch cluster, a get entities
function is called that does all the NER heavy-lifting
on indexing time. Specifically, the target text fields are
passed through the spaCy model, which is an English
multitask Convolutional Neural Network trained on the
OntoNotes corpus [21]. Self-reported metrics suggest that
the model is able to assign context-specific token vectors,
POS tags, dependency parse and named entities with
about 85% accuracy [21]. The complete list of the entity
types included in the annotation task (and also available
via the user interface) are shown in Table 3.

• Deduplication: Data pipelines that index data into Elas-
ticsearch often take advantage of the auto generated id
values that can be used either for Kibana visualisation
and bucketing or for any other type data lineage and
providence tasks. A key limitation, however, is that this
default function will provide a unique document ID for
two very similar of even identical records. News items
scraped from the web are bound to have a large number
of duplicates because of news sharing practices. Thus,
this problem requires the integration of a deduplication
mechanism into the pipeline, making sure that similar
documents are not be stored multiple times in Elastic-
search with different id values. While there are many
available methods for this tasks, for simplicity we use

Fig. 1. Example results for search query “bomb + FAC”

a more native approach using hashes. In particular we
deployed a custom python script that uses the MD5
algorithm to convert strings into hashes and calculate the
sums between fields [22]. Then, the sums are added in a
dictionary and searched through the hash of doc values
to see if any duplicate hashes can been found.

• Front-end: Elasticsearch features can be shared with
clients using a RESTful API over HTTP. To achieve
this we used NGINX as a reverse proxy and created
self-signed SSL certificates for HTTPS requests using
OpenSSL [23]. The content of the quote index is exposed
to the frontend [24] via a Flask application integrated
with Elasticsearch API [20]. The frontend is a simple
HTML page with a search bar where the user can create
simple query strings [25] with special operators (e.g.
bomb + car) that will match and return documents from
the index. Alternatively, for semantic queries the user can
formulate searches that include both strings and NER tags
(e.g. bomb + FAC) and retrieve documents containing
the keyword ’bomb’ together with contextual information
linked to the FAC tag. A shown in Fig. 2 the semantic
query “bomb + FAC” returns quotes from news articles
that include both the term ’bomb’ as well as FAC entities
such as Trump Tower, Times Square, Blue Route Mall
and Riverside Mall. The results are ranked based on the
default relevance score value returned by Elasticsearch,
which is based on the DefaultSimilarity algorithm in core
Lucene [26]. Thus, the page ranking algorithm prioritises
documents that include both strings and things, while
penalises results that include only strings.

IV. RESULTS

A. Data crawling and indexing

The web crawler collected a total of 30,000 unique JSONL
files (total 86GB) between January-May 2020, containing
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TABLE III
ENTITY TYPES INCLUDED IN THE QUOTE INDEX

Type Description
PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.
LAW Named documents made into laws.
LANGUAGE Any named language.
PERCENT Percentage, including ”%“.
MONEY Monetary values, including unit.

Fig. 2. Example results for the search query “bomb + FAC”. Source:
https://www.humcomp.ml

structured information for approximately 70 million individual
documents. In order to minimise the wastage of using unnec-
essary computing resources, the pipeline was configured to
ingest a subset of the available data covering a 30 day period
between approximately Jan-01 to February-01 2020. A total
of 14,730,354 quotes/documents were retrieved and added into
the quote index. About 1,200,000 documents were identified
using the deduplication method described in the previous
section. Given that the scope of the present work is to report
the integration of various widely used and mature technologies
for empowering non-technical users, the evaluation of the
developed system was conducted using user-centered scenarios
[27].

B. Aggregations

In order to empirically evaluate the ability of the search
engine to retrieve novel content, we tested a set of queries

and aggregations already discussed in Section II. We run a
simple term aggregation [16] on the NER tags to identify the
most popular terms in the “pre”, “quote”, and “post” fields (see
the data model in Fig. 1). This helped identify some general
characteristics of the index and better understand the news
coverage captured in crawled documents. Subsequently, we
applied a significant text aggregation [17] to assess any special
characteristics in our documents.

Indicatively, we explored the distribution of the most pop-
ular words-tokens before and after the text field that contains
the actual quote. As expected, the tokens that occur most
frequently in the documents are function words (e.g. the, and,
a, for) with low lexical meaning as well as noise crawled from
raw HTML files. However, there are also numerous uses of
gender pronouns (she/he, he said/she said) that might highlight
gender bias. We investigated this further by looking at the text
field before the quote, and found that the “he” utterances are
just over 65,000 while the “she” utterances are about 40,000.
Looking at the text field after the quote, we found that 194,000
instances of male pronouns and only 86,000 cases of female
pronouns. These results indicate that female experts are grossly
underrepresented in our index.

Similarly, because the quote index includes a large number
of NER types, we can run aggregations to identify the most
popular entities in the actual quote field. This can help us
better understand what themes and topics are discussed in the
quotes as well as the geographical coverage. The ten most
popular entities are as follows: UN (105,594), Iran (74,603),
American (44,392), Iraq (34,538), America (31,907), U.S.
(31,184), Iranian (30,851), US (26,954), Soleimani (23,958),
Trump (22,097), Americans (21,110), United States (20,613),
Australia (17,588).

Next, we turned to evaluate the quality of the index (and the
NER annotation) by applying significant text aggregations over
the top 400 most relevant results against the global quote set.
The significant text aggregation returns terms that can be used
for suggesting similar content [17]. Given that our set includes
NER tags, we queried the annotated text field for the string
“bomb” and requested to be evaluated against the background
provided by the quote ner.entities field containing the tagged
entities. The results returned the following suggestions: bomb
cyclone (1534.3), Bomb Bomb (644.4), BOMB-O-GRAM
(276.1), bomb squad (276.1), Bomb Bay Gin (276.1), Iran
(0.7), Islamic (0.2). The results indicate that the significant
text aggregation returns entities across various NER tags such
as location, products, GPE and LOC.

Finally, we run the same aggregation for the compound
query “bomb + FEC”. This aggregation returns “more like
this” results, and because we are including a NER tag in
the search query, we expect to receive FEC locations where
bomb-related events are previously discussed. The aggregation
returns two suggestions: Delhi Police (11900.7), and Times
Square (1270.5). We also run an aggregation using LOC
instead of FEC and retrieved the following candidate terms
involving locations: north coast, Camp Simba, Lamu County,
Manda Bay, Al-Shabaab, Kenya, the Middle East, US, and
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Iran.

C. Queries

We now turn to a more heuristic evaluation of the search
engine. A set of compound plain text string queries were
executed using the frontend interface of the application in
an effort to simulate a potential use case scenario of a non-
technical user interested in crime informatics.

More specifically, one plausible scenario involves an non-
technical user (investigator) who explores the modus operandi
of criminal groups using expert’s opinions from open media
sources. To retrieve relevant information, the user can search
for “drugs + NORP”, that will return results linking the
string “drugs” with a series of ethnic groups, nationalities
and religious or political groups. A second search might
focus on identifying what places/infrastructure co-occur with
keywords such as trafficking, cocaine or heroin. Desired results
can be retrieved using the FAC tag along with any of the
aforementioned search terms (e.g. heroin + FAC). In addition
to key places and infrastructure, users can also explore the
geographical location (LOC) or administrative jurisdictions
associated with drug-related crime. Finally, using the NER
tags PERCENT and MONEY, a user can find hits that discuss
drug-related activities in conjunction with monetary values,
quantitative measurements, and percentages. This search can
provide longitudinal estimations of the street value of the
recovered drugs.

V. CONCLUSIONS AND FUTURE WORK

The paper presents a high-level overview of a search engine
that was build scratch, using a large corpus of news quotes
provided by the GDELT project [6]. The search engine enables
users to quickly drill through news articles and to identify
quotations provided by experts and public figures. The added
value of the proposed solution is based on the seamless inte-
gration of spaCY’s NER model with Elasticsearch, allowing
non-technical users to access novel information using a com-
bination of strings and things. Furthermore, we have shown
that aggregations and analytics can bring about interesting
pathways for exploring fundamental sociological questions
such as the reproduction of gender bias and stereotypes in
the media. From the implementation side, there are numerous
bottlenecks that need to be addresses. The search engine
crawls raw data that have already been pre-processed and the
quotations identified. While the work of the GDELT project
has been extremely valuable, there is still room for improving
the accuracy of the mechanism used in identifying quotes. In
addition, the current version of the search engine implements
the default NER model from the sapCy. The model has been
reported to have an accuracy of about 80% when tested on a
general web corpus [7]. Future iterations of the search engine
will explore domain specific models using both static and
contextualized word embeddings [28] in downstream tasks,
that will increase the overall accuracy and quality of the user-
defined queries.
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