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Abstract— The last decades the Unmanned Aerial Systems 
(UASs) are being used in a variety of applications, such as civil 
protection, security, agriculture, armed forces, that need real time 
object detection of observed information by their sensors. 
Moreover, the development of fully autonomous UAS is heavily 
dependent on their capability to detect and track steady or moving 
objects in a robust, powerful and reliable manner.  In this review, 
we present a comprehensive literature survey and discussion on 
object detection methodologies for improving UAV autonomy and 
remote sensing applications. Emphasis is placed on Convolutional 
Neural Networks (CNN) implementing different object detectors 
and exploiting cloud processing. Based on these works, we provide 
a brief discussion and summary of related proposals for UAV-
based object detection using different methodologies and 
approaches, share views for future research directions and draw 
conclusive remarks. 
 

Keywords—Deep learning, drones, machine learning, neural 
networks, object detection, remote sensing, unmanned aerial 
vehicle. 
 

I. INTRODUCTION 
During the recent years, the widespread proliferation of 

Unmanned Aerial Systems (UAS or drones) among both state 
and non-state actors, has remarkably influenced remote sensing 
and object detection capabilities, in many areas, such as search 
and rescue, surveillance, inspection. With increasingly 
affordable, agile, flexible and available modern technologies 
almost all government and private domains, are exploiting 
drones’ usage to on-line detection, identification and tracking 
of target objects. One particularly important application domain 
where UASs could be proved a very powerful asset is in the 
area of natural disasters, such as floods, volcano explosions, 
earthquakes or man-made disasters caused by terrorists or 
anarchists. In such cases, emergency response authorities often 
require a real-time situation awareness capability to monitor the 
development and the status of reactions in the affected area. 
Unmanned aerial vehicles equipped with the appropriate 
technologies offer an ideal solution for developing the 
necessary situation awareness in order to support decision 
making. Due to the unknown dangers of the specific 
environment there are no other options in getting the necessary 

 
 

information. 
Traditional command and control of drones, for Line of Sight 

(LOS) or Beyond LOS (BLOS) flights is mainly based on radio 
communications between the unmanned vehicle and the ground 
station. Recently the focus has been on both high autonomy, 
incorporating Artificial Intelligence capabilities with or without 
cloud-based technologies and low-level autonomy, using 
traditional control and advanced avionics systems and their 
integration in distributed software architectural frameworks 
which support robust autonomous operation in complex 
operational environments such as those in disasters [1]. In any 
case the cornerstone of the UAS Autonomy, which is a huge 
challenge nowadays, is the development of a robust, powerful, 
reliable and simultaneously real-time capability to detect and 
track steady or moving objects. Even though this challenge has 
already been studied and implemented in many commercial 
products (i.e. DJI Smart Track function) the UAV domain sets 
additional restrictions such as the size and weight of the 
hardware which limits the computational capacity, the low-
quality images due to the distance of the sensor from the target 
and the high pose variations, especially for humans. Relatively 
larger objects such as buildings, vehicles, large animals can be 
detected in optical images whilst locating people could be a 
relatively more difficult problem due to the small target size, 
low contrast of the target with the background or presence of 
clutter [2] 

Object detection using aerial images is a very challenging 
and complex task but this task is even more difficult when using 
real time images from UAVs. The key challenges in deploying 
an “Object Detection Component” (ODC) on a UAV platform 
are as follows: 

• Power. The ODC should consume minimal power in 
order to minimize its effect on battery consumption 
and flight time of the drone  

• Computational load. The ODC should have low 
processing demands and less memory requirements as 
typical commercial UAVs have resource limitations. 

• Size & weight. All parts (acquisition unit, processing 
unit etc.) of the ODC and their support equipment 
should be light-weight, small and flexible to be 
attached on a drone’s frame without affecting its 
aerodynamic characteristics     
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• Latency. Communication between components and 
processing the input data with low latency and faster 
performance for utilization in real time.  

There are mainly two different approaches to overcome the 
above drone limitations, foregrounding specific advantages and 
disadvantages. One solution is to keep on board this high 
computational load of modern computer vision techniques such 
as deep learning, by exploiting parallel architectures with 
prominence of GPUs as accelerators. This approach offers fast 
processing and independence of external communications but 
is heavily dependent on the size and the produced power of the 
unmanned vehicle.  The second one is transferring the heavy 
processing burden to the ground station or to a cloud-based 
solution, which, however, poses additional challenges such as 
availability and stability of networks, latency in communication 
links as well as security risks. Notwithstanding, this approach 
ensures dynamic computational resources capable to handle 
very demanding models and algorithms. [7] 

The overarching aim of this paper is to provide an integrated 
review of the recent progress in the area of object detection with 
special focus on unmanned aerial vehicles and their challenges. 
Different from previously published reviews which 
concentrated on object detection methods implemented on 
“large vehicles” (fixed ground devices, cars, airplanes etc.), the 
significance of this paper is that it addresses the research gap on 
the challenges of small-scale UAVs with limited computational 
resources that can incorporate object detection. Presenting and 
comparing an indicative number of publications this review will 
be helpful for the researchers to have better understanding of 
object detection challenges posed by UAVs. This paper begins 
with a description of UAVs characteristics and main challenges 
related to remote sensing, while next presents a basic 
background about remote sensing focusing on UAV sensors. It 
also describes the different object detection methodologies and 
then provides fundamentals of Convolutional Neural Networks 
and the main object detectors categories. It also presents a 
qualitative comparison of the techniques implementing CNN-
based object detection both on-board and off-board, and finally 
concludes with the challenges and directions for future 
research. 

 

II. UAVS CHARACTERISTICS AND CHALLENGES 
UAVs can be categorized in a variety of ways based on 

vehicle attributes, such as size and weight, aerodynamic 
features (fixed wing or rotorcraft) or flight characteristics 
(altitude, speed, etc.). In general, larger aircraft use larger and 
more powerful engines that provide higher altitude, longer 
endurance and more payload capacity than smaller vehicles. 
Different organizations (NATO, European Union, NASA) each 
have defined UAV classifications based on weight and altitude 
or speed. Classification of UAV platforms for civil or scientific 
applications has generally followed existing military 
descriptions of the platforms with characteristics such as size, 
flight endurance, and capabilities.  

There are two types of UAVs that are most widely 

investigated and developed considering their aerodynamic 
features. Fixed-wing UAVs have been popular and commonly 
used for a variety of applications, particularly for long 
distance/long endurance tasks [11], [12] and for increased 
weight-lifting capacity (cargo, agriculture, military equipment 
etc.). Rotary-wing UAVs have many unique capabilities such 
as vertical take-off and landing, hovering and high level of 
maneuverability [22]. The last decade there has been an 
increase in interest on rotary UAV specifically multirotor 
because of the ease of construction and control [23] [24] and 
the rapid development of microelectronics. Compared to a 
conventional helicopter, a multicopter (more than two rotors) is 
more suited for flight that requires high maneuverability and 
simple control. The most common types of configuration for a 
multicopter is quadcopter, hexacopter, and octocopter. These 
platforms use multiple sensors and advanced electronic control 
system to stabilize the aircraft [25] [26] facilitating the control 
of the remote pilot. 

Being a platform for remote sensing, multicopters offer better 
stability to the photographic equipment as opposed to 
conventional single-rotor helicopters due to their omission of a 
vertical tail rotor and complex mechanical components that 
adjust the pitch of the fast-spinning primary blade. 
Additionally, the placement of rotors on the periphery of 
multicopters allows more room for both housing the gimbal and 
the camera in the center of the vehicle. Their simpler structure 
and their increased flight stability make multicopters easier to 
operate and maintain as well as less costly to acquire and 
modify. The inherent advantages associated with multicopters 
combined with measuring capabilities render them ideal for a 
diversity of remote sensing applications. Table 1 summarizes 
the benefits and drawbacks of various types of UAVs, focusing 
on remote sensing applications. 

 

III. REMOTE SENSING AND UAV SENSORS 
Remote sensing is the science of obtaining information about 

objects or areas on the Earth from a distance, using images 
acquired from airborne or spaceborne vehicles by measuring 
reflected or emitted electromagnetic radiation [39]. Based on 
their operation, remote sensors can be either passive or active. 
Passive sensors detect and record natural energy that is reflected 
or emitted from the Earth's surface. The most common source 
of radiation detected by passive sensors is reflected sunlight. On 
the other hand, active sensors use internal energy to collect data 
about Earth. This is clearly illustrated by a laser-beam remote 
sensing system projects a laser onto the surface of Earth and 
measures the time that it takes for the laser to reflect back to its 
sensor. This review is focusing on applications in which the 
general target of the observation is an “object” on the Earth's 
surface, the measured energy is electromagnetic radiation, the 
sensors are positioned on UAVs platforms, and the recorded 
data are available as two-dimensional digital images. It is worth 
mentioning that other techniques of remote sensing such as 
laser, acoustical or sonar technologies as well as Earth’s surface 
recognition (i.e. for precision agriculture) are excluded from 
this paper.  
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Any remote sensing application consists of two distinct 
processes: data acquisition (detection and recording of 
electromagnetic radiation), and data analysis (extraction of 
information from the recorded data). Electronic sensors convert 
electromagnetic radiation into electronic signals that can be 
stored as digital images locally or transmitted to a remote 
position. While the acquisition depends on the chosen sensor 
(camera), the last factor will vary in terms of the hardware and 
deep-learning algorithms used to process the interpretation of 
the images. Even though, near infrared, thermal, and depth-

sensitive cameras can also be used for image recognition, the 
most common are RGB cameras, equipped with a sensor that 
collects the same bands of light as the human eye (i.e., red, 
green, and blue). During the second step of the remote sensing 
process, the remotely sensed data, must be analyzed in order to 
provide useful information about the observed features. The 
final product of the remote sensing process is usually a map 
showing the spatial distribution of the objects of interest. 

 

 
Table 1. Advantages & Disadvantages of fixed wings and multicopter UAVs for remote sensing applications 

 
Fixed wing vs Multicopters - Advantages and disadvantages  

UAV Type Advantages Disadvantages 
Fixed wing Long range 

Long endurance 
High altitude 
Efficiency 
Weight-lifting capacity 

Take-off and landing space 
Low manoeuvrability 
Minimum flight speed 
Flights at high altitudes affected by clouds  
Higher cost 

Multicopter Vertical take-off 
Hovering 
High Manoeuvrability 
Simple start-up & take-off 
Low weight  
Lower cost  
Simple control  

Low payload 
Short range 
Short flight time 
Wind susceptibility 

 
 
Even though large military or commercial unmanned 

vehicles were capable to carry many sensors from the 
beginning, nowadays, small UAVs can also be equipped with 
extensive range of sensors and cameras. The miniaturization 
and the cost-effectiveness of electronics on one side, and the 
high-resolution cameras on board on the other, make UAVs 
flexible and adaptive for several high-performance 
applications.  

The technology used depends on the size of the UAV and the 
type and detailed data to be collected. The range of advanced 
imaging and sensor technologies that can be hooked up on a 
small commercial UAV usually includes GPS, INS, standard 
cameras, hyperspectral and multispectral cameras, thermal 
sensors, as well as several other specialized sensors such as 
LiDAR and Radar sensors [18]. The GPS/INS data are mainly 
used for navigation and control but also allow measurement of 
the position and the orientation of the vehicle at all times. 
Especially when the remote sensing data is acquired, GPS/INS 
information are used to support the analysis of those data.  

A. UAV Imaging sensors 

Even though UAVs provide a flexible flight platform, the 
success of a monitoring mission depends on the sensors they are 
equipped with. With the improvement of UAV performance, 
different imaging sensors have also been developed rapidly. 
Almost all modern commercial UAV are equipped with at least 
one onboard imaging sensor, which could be used in many 
applications providing low weights and high resolution. 

Representative sensors widely used in both scientific research 
and business applications are digital cameras, spectral imaging 
sensors and thermal infrared cameras [19].  

Interestingly enough UAV cameras provide fast images and 
real time videos of the target area while in some cases they 
could also be used as a vision navigation system. As compared 
to other types of sensors, there exist a wide range of RGB 
cameras on the market, with a great variety of features and 
costs. The low-cost RGB digital camera is widely used in 
remote sensing techniques, providing a high spatial resolution 
of radiation values in the red (~600 nm), green (~550 nm), and 
blue (~450 nm) spectral bands. Most commercial UAV 
platforms provide RGB sensors with differing spatial resolution 
determining the image quality. Common parameters for 
selecting RGB cameras for UAVs, include camera lens (better 
lens come with less geometric distortions), spectral range, 
resolution and quality of the charge coupled device 
(CCD)/complementary metal oxide semiconductor (CMOS) 
chips, as well as payload. 

Spectral sensors are divided into multispectral and 
hyperspectral sensors. The classification criteria are the number 
of spectrum bands and the width of each spectrum band. A 
multispectral sensor generally detects five to twelve spectral 
bands in each pixel while a hyperspectral sensor can acquire 
imagery data with hundreds or thousands of spectrum bands in 
each pixel through narrow widths (5–10 nm) in the visible–
infrared region. Multispectral cameras are one of the most 
commonly used sensors in addition to RGB cameras in the 
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UAV sensors family, because of their benefits of obtaining 
spectral information in the red-edge and near-infrared (NIR) 
band. Multispectral imagery generally refers to 3 to 10 bands 
that range from the visible to NIR. Hyperspectral sensors 
contain bands with narrow wavelengths while multispectral 
sensors contain bands with broad wavelengths [19]. 
Hyperspectral sensors consist of much narrower bands and 
generate more than 200 spectral bands that range from the 
visible to short wave infrared [18].  
Thermal cameras typically carry a sensor that detects the 
infrared radiation emitted by a body, displaying its temperature 
in a digital radiometric image. Two types of thermal cameras 

are currently available: scanning devices that allow for 
capturing a point or a line and those with a two-dimensional 
infrared focal plane array [43]. All bodies emit electromagnetic 
energy in the infrared (IR)wavelength range depending on 
temperature according to the principle of black body radiation. 
A thermal sensor detects this invisible energy (with 
wavelengths from 3–14 µm), which is then converted into 
visible images showing the temperature of the target. A thermal 
sensor is prone to errors owing to fluctuating environmental 
conditions in the air and other objects emitting or reflecting 
thermal infrared radiation. Thus, periodical calibration for 
thermal sensors is crucial for collecting accurate data [42]. 

 
Table 2. Sensors for commercial unmanned aerial vehicle (UAV) platforms. 

 Brand/model Spectral range Spatial 
Resolution 

Weight 

RGB Camera Sony A9  ~400–700 nm  24.2 MP  588 g 
Canon EOS 5D mark IV  ~400–700 nm  30.4 MP  ~800 g 

Nikon D850  ~400–700 nm  45.7 MP  915 g 
Multispectral 

sensors 
Sentera Quad Sensor RED 655 nm  

RED EDGE 725 nm  
Near infrared 800 nm 

1248 × 950 170 g 

MicaSense ALTUM BLUE 475 nm  
GREEN 560 nm  

RED 668 nm 
RED EDGE 717 nm 

Near infrared 840 nm 

2064 × 1544 357 g 

Parrot Sequoia + GREEN 550 nm  
RED 660 nm  

RED EDGE 735 nm 
Near infrared 790 nm 

1280 × 960 72 g 

Thermal 
infrared 
sensors 

DJI Zenmuse XT 7.5–13.5 µm 640 × 512  
336 × 256 

270g 

Yuneec CGOET 8–14 µm 1920 × 1080 275g 
FLIR Duo Pro R 7.5–13.5 336 × 256 325g 

 
 

IV. OBJECT DETECTION METHODOLOGIES 
 

G. Cheng et al. [17] presented a thorough review of the 
literature concerning generic object detection and the related 
methodologies. Different approaches have been developed for 
object detection from aerial images which could be generally 
divided into template matching-based methods, knowledge-
based methods, OBIA-based methods and machine learning-
based methods.  Among the first approaches developed for 
object detection are the template matching-based methods. At 
the first stage, the template is generated and at the second stage 
the similarity is measured. During the template generation, a 
template for each to-be-detected object class should be firstly 
generated by hand-crafting or learning from the training set, 
while at the similarity measure, the stored template T is used to 
match the image at each possible position to find the best 
matches.  

Another very popular approach for object detection is the 
knowledge-based methods through which object detection 
problem is translated into hypotheses testing problem by 
establishing various knowledge and rules. The main challenge 
of knowledge-based object detection methods is how to 
effectively transform the implicit knowledge understanding on 
target objects into the explicit detection rules. A new 
methodology for object detection is the Object-Based Image 
Analysis (OBIA) methods which classifies or maps high 
resolution imagery into meaningful objects. During the first 
stage of these methods the image is segmented into 
homogeneous regions (segments also called objects) 
representing a relatively homogeneous group of pixels by 
selecting desired scale, shape, and compactness. At the next 
stage a classification process is applied to these objects. OBIA 
methods prevail over conventional pixel-based image 
classification methods because they are capable to incorporate 
spatial context or object shape in the classification.  
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Fig. 1.  Machine-learning Feature Extraction methods and Classifier Trainings. 
 

 
The latest trend for object detection is machine learning-

based methods where object detection can be performed by 
learning a classifier that captures the variation in object 
appearances and views from a set of training data in a 
supervised or semi-supervised framework. The input of the 
classifier is a set of object proposals with their corresponding 
feature representations and the output is their corresponding 
predicted labels, namely an object or not. Most popular feature 
extraction mechanisms, used at machine learning-based 
methods, are Histogram of oriented gradients (HOG) feature 
and Haar-like features. The next important step after feature 
extraction, is classifier training using a number of possible 
approaches with the objective of minimizing the 
misclassification error on the training dataset. There are 
different learning approaches such as Support Vector Machine 
(SVM was proposed by (Vapnik and Vapnik, [27]), AdaBoost 
(AdaBoost algorithm (Freund, [28] and Freund and Schapire, 
[29]) and Artificial Neural Networks (ANN) which are very 
capable to learn complicated patterns whose complexity 
impedes analysis especially via usage of other conventional 
approaches. A brief summary of feature extraction methods and 
classifier training methods is presented in Figure 1. 

V. CONVOLUTIONAL NEURAL NETWORK DETECTORS 
 
Convolutional Neural Network (CNN) is a specific neural 

network architecture, [30], [31] which has been demonstrated 
as a powerful class of models in the computer vision field, 
beating state-of-the-art results on many tasks such as object 

detection, image segmentation and object recognition [13] – 
[14] – [15]. A Convolutional Neural Network (CNN) is a Deep 
Learning algorithm which can take in an input image, assign 
importance (learnable weights and biases) to various 
aspects/objects in the image and able to differentiate one from 
the other. The pre-processing required in a CNN is much lower 
compared to other classification algorithms. In primitive 
methods filters are hand-engineered, with enough training, 
CNNs have the ability to learn these filters/characteristics.  

CNNs are composed of multiple layers, with higher layers 
built on top of lower ones capturing more abstract 
representations of the input data. The structure of a CNN 
typically comprises a feature extractor stage followed by a 
classifier. The objective of the Convolution Operation is to 
extract high-level features such as the edges, from the input 
image. Conventionally, the first Convolutional Layer is 
responsible for capturing Low-Level features such as the edges, 
color, gradient orientation, etc. With added layers, the 
architecture adapts to the High-Level features as well, giving a 
network, which has the wholesome understanding of images in 
the dataset, similar to human interpretation [8]. 

During the last decade, a variety of object detectors have 
been proposed by researchers, aiming at improving the 
accuracy of the detection while at the same time decreasing the 
computational complexity of their methods in order to achieve 
real-time performance for mobile and embedded platforms [32] 
The CNN-based object detectors, such as Faster R-CNN [33], 
R-FCN [34], YOLO [35] and SSD [36] can be divided into two 
categories with respect to their high-level structure: region-
based detectors, and single-shot detectors (SSD).  
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Region-based detectors separate the prediction of the 
bounding box position from the object class prediction. There 
are two major components that make region-based CNN 
architectures powerful at the object detection task. [37] The first 
component replaces the low-level hand engineered features like 
HOG [38] or SIFT [39], with CNN feature maps which have 
larger representation capacity. But this larger representation 
capacity requires more computational effort to process the CNN 
features. The second component is a region proposal algorithm, 
which is used to propose regions of interest (ROI), that will 
contain the object of interest. Hence the features computation 
time is reduced by focusing the network attention on a smaller 
set of ROIs. Region-based CNN (R-CNN) [40] was the 
approach that pioneered using region proposal on top of CNN 
features as an object detector. Improvements of R-CNN are Fast 
R-CNN, Faster R-CNN, Mask R-CNN and Mesh R-CNN. 

Single-Shot Detectors aim to avoid the performance 
bottlenecks of the 2-step region-based systems [7].  Single-Shot 
Detector algorithms like YOLO (You Only Look Once) [35] 
and SSD (Single-Shot Detector) [36] use a fully convolutional 
approach in which the network is able to find all objects within 
an image in one pass (hence ‘single-shot’ or ‘look once’) 
through the convolutional network. The region proposal 
algorithms usually have slightly better accuracy but slower to 
run, while single-shot algorithms are more efficient. The YOLO 
[35] framework casts object detection to a regression problem 
and in contrast to the Region Proposal Network and the 
classifier design of Faster R-CNN, employs a single CNN for 
the whole task. YOLO divides the input image into a grid of 
cells and for each cell outputs predictions for the coordinates of 
a number of bounding boxes, the confidence level for each box 
and a probability for each class. Compared to Faster R-CNN, 
YOLO is designed for real-time execution and by design 
provides a trade-off that favors high performance over detection 
accuracy. 

In [44] a new family of scalable and efficient object 
detectors, named EfficientDet was introduced, based upon a 
previous work on scaling neural networks (EfficientNet), 
incorporating a novel bi-directional feature network (BiFPN) 
and new scaling rules. EfficientDet achieves state-of-the-art 
accuracy while being up to 9x smaller and using significantly 
less computation compared to prior state-of-the-art detectors. 
The idea behind EfficientDet arose from the effort to find 
solutions to improve computational efficiency by conducting a 
systematic study of prior state-of-the-art detection models. In 
general, object detectors have three main components: a 
backbone that extracts features from the given image; a feature 
network that takes multiple levels of features from the backbone 
as input and outputs a list of fused features that represent salient 
characteristics of the image; and the final class/box network that 
uses the fused features to predict the class and location of each 
object. By examining the design choices for these components, 
several key optimizations were identified, in order to improve 
performance and efficiency [44]. Such optimizations include:  

• the implementation of the EfficientNet backbone, which 
offers a much better efficiency 

• a new bi-directional feature network, BiFPN, which 

incorporates the multi-level feature fusion idea from 
FPN/PANet/NAS-FPN that enables information to flow in both 
the top-down and bottom-up directions, while using regular and 
efficient connections 

• a new compound scaling method for object detectors, 
which jointly scales up the resolution/depth/width. Each 
network component, (i.e., backbone, feature, and box/class 
prediction network), will have a single compound scaling factor 
that controls all scaling dimensions using heuristic-based rules. 

VI. RELATED WORK OF MACHINE LEARNING-BASED METHODS 
FOR UAV’S IMAGERY 

P. Doherty et al. [1] proposed a technique using two video 
sources (thermal and color) and allows for high rate human 
detection at larger distances than in the case of using the video 
sources separately with standard techniques. A thermal image 
is analyzed first to find human body sized silhouettes. 
Corresponding regions in a color image are subjected to a 
human body classifier which is configured to allow weak 
classifications. The classifier which is in fact a cascade of 
boosted classifiers working with Haar-like features requires 
training with a few hundred positive and negative examples. 
During learning the structure of a classifier is learned using 
boosting. 

V. Reilly [4] proposed a system based on the geometric 
constraints of the orientation of shadow cast by a person in the 
scene with respect to the metadata (global position, time) and 
the relationship between average person height and the size of 
its corresponding shadow. The authors utilize the projection of 
shadow orientation to obtain a set of potential shadow 
candidates and then obtain a refined set of human candidates, 
which are pairs of shadow and normal blobs that are of correct 
geometric configuration, and relative size. Once the refined set 
of candidates has been obtained, they extract wavelet features 
from each human candidate, and classify it as either human or 
clutter using a Support Vector Machine (SVM). The rationale 
behind their geometric constraints was to improve the 
performance of any detection method by avoiding full frame 
search. Hence other models, features, and classification 
schemes suitable for aerial imagery can be used. 

O. Oreifej et al. [3] presented a system using Histogram of 
Oriented Gradients (HOG) for people detection and 
identification from airborne optical images. For detection, they 
trained a support vector machine (SVM) classifier based on the 
HOG descriptor using a dataset of pedestrian images in aerial 
view. The HOG descriptor captures the most important cues of 
the human body, such as head and shoulders in good detail. 
Although reported results are promising, the scenarios are 
presented in simple and uncluttered environments which limit 
the general application of this technique.  

A. Gąszczak et al. [2] presented an approach for the 
automatic detection of vehicles based on using multiple trained 
cascaded Haar classifiers with secondary confirmation in 
thermal imagery. Additionally, they presented a related 
approach for people detection in thermal imagery based on a 
similar combined set of cascaded Haar classifiers [21] with 
additional multivariate Gaussian shape matching for secondary 
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confirmation. The presented results showed the successful 
detection of vehicle and people under varying conditions in 
both isolated rural and cluttered urban environments with 
minimal false positive detection. 

J. Gleason et al. [16] introduced an approach consisting of a 
cascade detection algorithm with the first stage serving as a fast 
detection solution, rejecting most of the background and 
selecting patterns corresponding to man-made objects. The 

patterns selected by the first stage are further refined in the 
second stage using four image classification methods (KNN, 
SVM, decision trees and random trees) and two feature 
extraction techniques (histogram of gradients and Gabor 
coefficients). The proposed system achieved best overall results 
using Gabor derived histograms and random trees classifiers. 

 

 
Table 3.  Comparison of machine learning-based methods for UAVs object detection. 

 
Referenc
e 

Date Proces-
sing 
Unit 

Feature 
Extraction 

Classifier 
Training 

Datasets CNN 
Detectors  

Indicative Experimental 
Results 
(mean average precision – 
mAP) 

Targets 

P. 
Doherty 
[1] 

2007 On-
board 

Cascaded 
Haar 
features 

AdaBoost 
Decision trees  

   Human 
Body 
Detection 

V. Reilly 
[4] 

2010 On-
board 

Wavelet 
features 

Support Vector 
Machine (SVM) 

   Humans 

O. 
Oreifej 
[3] 

2010 On-
board 

Histogram 
of 
Gradients 
(HOG)  

Support Vector 
Machine (SVM) 

   Human 
identity 

A. 
Gaszcza 
[2] 

2011 Ground 
station 

Cascaded 
Haar 
features 

AdaBoost    People 
and 
Vehicles 

J. 
Gleason 
[16] 

2011 Off-
board 

Histogram of 
Gradients 
(HOG)  
 
Gabor 
coefficients 

Support Vector 
Machine (SVM) 

K -nearest-
neighbor (KNN) 

Decision trees 
(DTrees) 

Random trees 
(RTrees) 

  HOG/SVM-mAP=93.3% 
HOG/KNN-mAP=83.3% 
HOG/RTrees-mAP=85.7% 
 
Gabor/SVM-mAP=100% 
Gabor/KNN-mAP=100% 
Gabor/RTrees-mAP=98.9% 

 

J. Lee 
[10] 

2017 On-
board 
& 
Cloud 

 
Convolutional 
Neural 

Networks - 
Region-based 
detectors 

Pascal 
VOC 2007  
Pascal 
VOC 2012 

Fast YOLO 
YOLO 
SSD300 
SSD500 
Faster R-
CNN  
 

mAP=78.3% 
mAP=79.4% 
mAP=81.6% 
mAP=82.6% 
mAP=83.9% 
 

Objects in 
an Indoor 
Environ-
ment 

C. 
Kyrkou 
[8] 

2018 On-
board 

 
Convolutional 
Neural 

Networks - 
Single-Stage 
Detectors 
(CNN-SSD)  

Custom 
(about 5k 
images) 

Modified 
Tiny-YOLO 

mAP=95% Vehicles 

Subrahm
anyam 
[7]  

2019 On-
board 

 
Convolutional 
Neural 

Networks  

VisDrone Deep Feature 
Pyramid 
Network 
(DFPN) 
architecture 

ResNet mAP=30.6% 
 
MobileNet mAP=29.2% 

Object 
Detection 

P. Nousi 
[5] 

2019 On-
board 

 
Convolutional 
Neural 

Networks - 
Single-Stage 
Detectors 
(CNN-SSD)  

Custom 
(about 12k 
images) 

SSD 
YOLO  
Tiny YOLO  

 Object 
Detection 
and 
Tracking 
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D. 
Safadino 
[6] 

2020 On-
board 

 
Convolutional 
Neural 

Networks - 
Single-Stage 
Detectors 
(CNN-SSD)  

Microsoft 
Common 
Objects in 
Context 
(COCO) 

SSD 
SSDLite 

 Human 
Detection 

 
 

 
 
J. Lee et al. [10] proposed a hybrid solution namely moving 

the computation to an off-board computing cloud, while 
keeping low-level object detection and short-term navigation 
on-board. Using the cloud system, they were able to apply 
Faster R-CNNs [20], to detect not one or two but hundreds of 
object types in near real-time. To minimize the unpredictable 
lag from communication latencies they retained some visual 
processing locally, including a triage step that quickly identified 
region(s) of an image that are likely to correspond with objects 
of interest, as well as low-level feature matching needed for 
real-time navigation and stability. Their findings suggest that 
the cloud-based approach could allow speed-ups of nearly an 
order of magnitude, approaching real-time performance even 
when detecting hundreds of object categories, ignoring these 
additional communication lags. 

C. Kyrkou et al. [8] presented a holistic approach for 
designing a single-shot object detector based on deep 
convolutional neural networks (CNNs) that enabling UAVs to 
perform vehicle detection.  The CNN architecture, and the 
optimizations necessary to efficiently map such a CNN on a 
lightweight embedded processing platform suitable for 
deployment on UAVs. They focused on designing an efficient 
and lightweight network to accelerate the execution of the 
model with minimal compromise on the achieved accuracy. 
They adapted the Tiny-YOLO, model [9] to detect only one 
class (top-view vehicles) and then they explored the impact on 
performance by changing the structure of a CNN network such 
as the number of filters, the number of layers, the image size, 
the number of convolution and the pooling layers.  

Subrahmanyam et al. [7] proposed an object detection model 
which is computationally less expensive, memory efficient and 
fast without compromising the detection performance, running 
on-board a drone. They proposed a Deep Feature Pyramid 
Network (DFPN) architecture and a modified loss function to 
avoid class imbalance and achieved real time object detection 
performance on real drone environment [41]. Their experiments 
were conducted using a low-cost quadcopter drone as a 
hardware platform, in the scenario of detecting target objects in 
an environment containing objects like pedestrians, buses, 
bicycles etc. They considered two networks namely ResNet and 
MobileNet as backbone convolutional bases for their detection 
model, concluding that ResNet provided better results in terms 
of detection accuracy, while combination of MobileNet resulted 
in real time speeds without compromising the detection 
accuracy. 

P. Nousi et al. [5] proposed a combination of one-stage deep 
neural detectors and correlation-based trackers as it seemed to 

provide the best balance between accuracy and real-time 
performance, under the energy and computational constraints 
imposed by the UAV setting. Although Region-based detectors, 
such as Faster R-CNN, are more accurate, they tend to be 
slower than single-stage detectors, so their study is focused on 
Single-Stage Detectors, namely SSD and YOLO with 
MobileNet v1 and Inception v2 backbones detectors. A specific 
modular software system incorporating a range of detectors and 
trackers was implemented in a Robot Operating System (ROS) 
environment and evaluated on a number of relevant datasets. 
Their results indicated that a sophisticated, neural network-
based detection and tracking system can be deployed at real-
time even on embedded devices. 

D. Safadinho et al. [6] proposed a solution that performed 
human detection from an aerial perspective through techniques 
of Computer Vision with the objective of estimating a safe 
landing location near a person. Their research is concentrated 
on low-cost equipment (i.e., camera, processing device) on-
board a commercial UAV, to understand if the solution can be 
cost effective. The CNN models tested were the SSD-
MobileNet-V2 and the SSDLite-MobileNet-V2, designed for 
devices with low computing capabilities. Both models 
presented patterns for the average time, precision, recall, and 
confidence. Their solution was tested iteratively in five 
different contexts deducing that the time elapsed for processing 
the images with the SSD takes more than twice the time than 
with the SSDLite. Finally, they proposed a synthesis of the 
CNN models, since: 

• at higher altitudes the SSDLite is the proper 
algorithm to be used, offering lower processing 
time and better detection range and  

• SSD model at lower altitudes due to better 
precision and confidence values. 

To sum up, the analysis of the related works, is shown in 
Table 3. They were compared by the location of the processing 
unit, the Feature Extraction architecture, the Classifier Training 
method, the CNN Detectors and Datasets being used as well as 
the target objects. A column with indicative experimental 
results is also presented. 

VII. CONCLUSIONS AND FUTURE DIRECTIONS. 
Object detection for improving UAV autonomy and remote 

sensing applications has always been an essential but 
challenging issue in the field of UAV image analysis, due to the 
restrictions and the 3-axis movement of the remote vehicle. In 
this paper, a review of indicative studies and experimentations 
was presented focusing on convolutional neural networks and 
the new capabilities provided by cloud processing. The (almost) 
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unlimited cloud-based computation resources could be the ideal 
solution for the high processing demands of computationally 
expensive state-of-the-art object detection algorithms such as 
CNNs. A promising future direction would be to exploit the 
capabilities of IoT, which could guarantee the cloud-based 
computational power and improve the potentially high and 
unpredictable communication lag. 
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