








 

2. In the second one, the last rating of each user was 
dropped, and then the new last (the rating initially 
ranked as second to last) was hidden and predicted, as 
well, following the work in [49]. 

Due to the close agreement of the aforementioned two ex-
periments’ results (less than 1% result difference) and for con-
ciseness, the results of the first experiment only are reported. 

 
Fig. 1. MAE reduction achieved by the proposed algorithm for the two 

datasets tested. 

The performance measured by the MAE reduction is 
demonstrated in Fig. 1. We can observe that the proposed 
algorithm (termed as AF in Fig. 1 and Fig. 2) is the one 
achieving the best results for both the datasets tested. More 
specifically, the average MAE reduction achieved over the two 
datasets equals to 3.53%, approximately 39% bigger than the 
corresponding improvement achieved by the same_weights 
algorithm (2.54%) presented in [14]. 

 

Fig. 2. RMSE reduction achieved by the proposed algorithm for the two 
datasets tested. 

The performance measured by the RMSE reduction is 
demonstrated Fig. 2. We can observe that the proposed 
algorithm, again, achieves the best results for both the datasets 
tested. More specifically, the average RMSE reduction 
achieved over the two datasets equals to 2.9%, approximately 

43% bigger than the corresponding improvement achieved by 
the same_weights algorithm (2%) presented in [14]. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a simple, yet effective algorithm 

that effectively combines limited CF information, concerning 
users’ ratings on items, with limited SN information, 
concerning users’ social relations. It takes into account the 
relative oldness of each user’s neighbourhood (CF and SN) that 
takes part in the prediction, in order to improve prediction 
accuracy in SN CF RSs. The presented algorithm uses a 
weighted average metascore combination approach that 
combines the two partial prediction rating scores, formulated 
separately by the SN and the CF neighbourhoods. It sets the 
aging factors in these two scores, based on the relative time of 
the ratings concerning the item for which the user prediction is 
formulated, of each neighbourhood. 

The proposed algorithm has been validated through a set of 
experiments, aiming to quantify the obtained gains in 
prediction accuracy, gain insight on the effect that this 
combination has in the rating prediction quality. 

In these experiments, two datasets containing both CF 
information (user-item-rating-timestamps), and SN information 
(user-user-relation) and using two types of social relations, 
directed (trust) and undirected (friendship), were used to 
examine the behaviour of the proposed algorithm in this 
category of datasets. The evaluation results have shown that 
the proposed algorithm may provide substantial improvement 
on rating prediction quality, across all datasets. The MAE 
decreases by 3.5% and the RMSE declines by 2.9%, on 
average, surpassing by approximately 40% the corresponding 
improvements achieved by the same_weights algorithm 
presented in [14]. In both cases, the performance of the plain 
CF algorithm is taken as a baseline. 

The proposed algorithm requires no additional information 
derived either from the CF or the SN data information sources, 
such as items’ characteristics (e.g., category, colour, price and 
size), users’ demographics (e.g. gender, age and location) or 
SN’s contextual information (e.g. influence, tie strength and 
group membership) and, hence, can be easily applied to almost 
every SN CF system [54,55]. 

Our future work will focus on investigating more aging 
factors concerning the oldness of the ratings in the database, 
Furthermore, we are planning to tune the 𝑠𝑖𝑚(𝑈1, 𝑈2)=> 
similarity parameter value, considering additional information 
derived from the SNs domain, such as social circles [56-58] 
and textual reviews [59-61]. Last, we are planning to evaluate 
the presented algorithm under additional user similarity 
metrics, such as the Euclidean Distance, the Hamming 
Distance, and the Spearman Coefficient [65,66] for the cases 
which those metrics are proposed by the literature as more 
suitable for the additional information. 
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