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Abstract—Analysing narratives through their social networks
is an expanding field in quantitative literary studies. Manually
extracting a social network from any narrative can be time
consuming, so automatic extraction methods of varying com-
plexity have been developed. However, the effect of different
extraction methods on the resulting networks is unknown. Here
we model and compare three extraction methods for social net-
works in narratives: manual extraction, co-occurrence automated
extraction and automated extraction using machine learning.
Although the manual extraction method produces more precise
results in the network analysis, it is highly time consuming.
The automatic extraction methods yield comparable results
for density, centrality measures and edge weights. Our results
provide evidence that automatically-extracted social networks
are reliable for many analyses. We also describe which aspects
of analysis are not reliable with such a social network. Our
findings provide a framework to analyse narratives, which help
us improve our understanding of how stories are written and
evolve, and how people interact with each other.

Index Terms—social networks, narratives, television

I. INTRODUCTION

Quantitative narrative analysis has become increasingly pop-
ular in recent years with the availability of literary works, film
and television scripts, online. Reasons to analyse films [1]–[3],
television shows [4]–[6] or novels [7]–[12] include:

• to gain a deeper understanding of a particular narrative,
narratives of a certain type, or narratives in general, or

• to help determine what would improve narratives in the
future.

Narrative analysis is popular within blogs, where fans visualise
data from television shows such as Game of Thrones [13],
Seinfeld [14], The Simpsons [15], Grey’s Anatomy [16] and
Friends [17], [18]. Similarly, films [19], [20] and plays [21],
[22] have been analysed quantitatively.

Fortuin et al. [23] used narrative analysis to inspire script-
writers suffering from writer’s block, while Gorinski et al.
[24] analysed film scripts to find a logical chain of important
events, allowing them to summarise film scripts automatically.

We can also use narrative analysis to predict what will happen
next [8]. Event prediction in narratives also suggests potential
methods for predicting real-world events from news [25], [26].

A popular way of analysing narratives is through the social
networks they describe. A social network for a narrative is
comprised of characters (as nodes) and their interactions or
relationships (as edges). As narratives are stories about char-
acters’ interactions [7], it makes sense to analyse the narrative
by analysing how the characters interact. Understanding and
comparing narrative social networks could lead to insights into
which structures make a narrative successful.

One of the most problematic aspects of narrative social net-
work analysis is constructing the network from an unstructured
text source such as a script or novel. Extracting an interaction
network from novels is challenging because the text does not
always state who is speaking. Most attempts to match quoted
speech in novels to the character speaking involve Natural Lan-
guage Processing (NLP) and/or machine learning techniques
[9], [27]–[31]. A disadvantage of these techniques is that
there is either significant manual work in identifying aliases
of characters, or that the accuracy of character identification
ranges from < 50% to ≈ 90% [27]. The more manual work
put in at the NLP stage, the more accurate the identification
tends to be. Alternatively, researchers can manually identify
the speakers in novels [32], but this takes substantially longer
and is not practical for analysing large corpora.

Extracting social networks from film or television scripts
is almost as difficult. The most accurate, but time-consuming,
approach is to manually record interactions between characters
[5]. A more scalable approach is to automatically create a
social network from the script of the film or television show.
Scripts necessarily label speakers, but not who each character
is speaking to. There are examples of using NLP and machine
learning techniques [33]–[35], but again there is a trade-off
with the accuracy of identifications.

An alternative automatic method is to extract a co-
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occurrence network [6], [36]–[38], which infers interactions
between characters from the number of times they appear
in a scene together. We can create co-occurrence networks
for novels as well, for example by counting the number of
times characters are mentioned within a number of words of
each other [8]. Using a co-occurrence network presumes that
relationship strength can be measured by the number of times
characters share a scene, as opposed to the number of times
characters directly interact. While this assumption is intuitive,
to the best of our knowledge, there is no research into the
effect of this assumption on the resulting network properties
in narrative analysis.

In this paper we compare three social network extraction
techniques in the context of TV scripts:

• manually-extracted networks (as in Bazzan [5]),
• networks extracted using NLP (as in Deleris et al. [35]),

and
• co-occurence networks extracted using scripts.

To compare these techniques we create a model to simulate
interactions in a narrative. Using the simulated interactions,
we create and compare observation networks based on the
three extraction techniques. This in silico model allows us to
compare techniques with complete knowledge of the ground
truth. Modelling the narrative also allows us to control and
measure parameters such as the error rate for the NLP method
or the number of scenes for the co-occurrence method. Finally,
the model allows our methods to be applied to a range of
narratives, not just the case study we give here.

We use standard network metrics (see subsection III-F) to
compare the three different network extraction techniques,
applied to the characters in the television series Friends.
Friends is an American situation comedy (sitcom) with ten
seasons aired from 1994 to 2004. We choose Friends as a
case study for our model because the series is well-known,
long-running and a popular subject amongst researchers [5],
[6], [34], [35], [39].

Some key findings of this work are:
• Co-occurrence networks have higher edge densities than

the manually extracted networks, but the densities are
highly correlated between techniques (the Pearson’s cor-
relation coefficient is 0.96).

• Centrality measures (degree, betweenness, eigenvector
and closeness) are highly correlated in the manually
extracted networks and co-occurrence and NLP networks,
but clustering is not reliable in the automated networks.

• Edge weights in the automated networks correlate mod-
erately with the edge weights in the manually extracted
networks (the median Spearman’s correlation coefficient
is 0.77 for the co-occurrence networks and 0.80 for the
NLP networks).

• The six core “friends” in Friends (Chandler, Joey, Mon-
ica, Phoebe, Rachel and Ross) interact less with each
other less as the series progresses.

We conclude that automatically extracted networks – co-
occurrence and NLP networks – give reliable analyses for most

global, character, and relationship metrics, so we recommend
extracting narrative social networks in one of these ways
for time efficiency. If clustering is of high importance in an
analysis, however, manually extracted networks are required.

II. DATA

Although our findings are partially based on in silico
experiments, we use real data to inform our models and to
provide final verification.

We examine three datasets estimating social networks for
the television series Friends. The social network describing
character relationships are defined by nodes that represent
characters in a chosen time frame (usually an episode or
season), and edges connecting characters who interact. The
precise definition of an interaction varies throughout the litera-
ture, but the assumption that characters who interact more have
stronger relationships remains constant. Our goal is to model
these relationships. Note that the strength of a relationship
does not imply characters are good friends (despite the name
of the series), as characters can have strong hostile interactions
[7], [40].

The first dataset consists of manually extracted data by
Bazzan [5], available at https://github.com/anabazzan/friends.
It contains ordered lists of undirected interactions between
pairs of characters for each episode. Bazzan manually anno-
tated 16569 interactions from all 236 episodes, defining an
interaction as two characters talking, touching or having eye
contact. While there may be human interpretation errors in this
dataset, this is the most reliable method of extracting the social
network. Therefore, the manual extraction method provides
a ‘gold standard’ for the social networks of the characters.
We call the networks from this dataset the manually extracted
networks, or manual networks. The edge weights in the
manual networks correspond to the number of interactions
between two characters in a given timeframe. Table I shows
the number of episodes, interactions, scenes and characters in
each season.

Season Eps Chars Ints Scenes Ints/Ep Scenes/Ep Ints/Scene
1 24 126 2492 364 103.83 15.17 6.85
2 24 107 1815 314 75.62 13.08 5.78
3 25 98 1770 422 70.80 16.88 4.19
4 24 96 1598 438 66.58 18.25 3.65
5 24 92 1786 378 74.42 15.75 4.72
6 25 99 1491 387 59.64 15.48 3.85
7 24 81 1475 402 61.46 16.75 3.67
8 24 110 1220 356 50.83 14.83 3.43
9 24 101 1454 345 60.58 14.38 4.21

10 18 88 1468 238 81.56 13.22 6.17
TABLE I

SUMMARY OF DATA FROM MANUALLY COLLECTED DATASET [5]. FOR
EACH SEASON WE HAVE THE NUMBER OF EPISODES, CHARACTERS

(CHARS), TOTAL NUMBER OF INTERACTIONS (INTS), AND NUMBER OF
SCENES (SCENES). WE ALSO CALCULATE THE NUMBER OF INTERACTIONS
PER EPISODE (INTS/EPISODE), SCENES PER EPISODE (SCENES/EPISODE)

AND AVERAGE INTERACTIONS PER SCENE FOR EACH SEASON
(INTS/SCENE).

Table I shows there are 24 episodes in most seasons, but 25
episodes in Season 3 and Season 6 and only 18 episodes in
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Season 10. Season 1 has notably more interactions than any
other season, possibly due to the need to establish characters
and relationships at the beginning of the series. We will discuss
our findings on trends in network properties over all 10 seasons
in subsection IV-D.

The second dataset contains co-occurrence networks, ex-
tracted using scripts available from a fan website [41]. We
identified scene breaks and the characters that speak in each
scene. For every scene, we assume every character interacts
with every other character, so a scene is a “co-occurrence”,
and hence we call these networks co-occurrence networks.
The edge weights correspond to the number of co-occurrences
between characters. This dataset is available at https://figshare.
com/projects/Friends co-occurrence networks/57479.

Note that only speaking characters are identified, even
though there could be scenarios where characters appear
or interact without speaking. Also, the scripts [41] were
transcribed manually, so there are issues with inconsistency,
typing mistakes and characters being referred to by different
names (e.g. Ross, Ross Geller or Mr. Geller). To minimise
these issues, we cleaned the scripts using manually defined
regular expressions. The resulting co-occurrence networks
dataset contains weighted edge lists for 227 episodes. The
total number of episodes is less than for the manual networks
because episodes with two parts (e.g. S1E16 - The One With
Two Parts: Part One and S1E17 - The One With Two Parts:
Part Two) are included as one episode in the co-occurrence
networks dataset. The total number of interactions over all co-
occurrence network episodes is 18574, which is surprisingly
close to that of the manual networks dataset.

An NLP network dataset for Friends was not available,
but Deleris et al. [35] provide information about how they
extracted the social network, making use of Chen and Choi’s
data [34]. Chen and Choi use NLP techniques to identify
which character is mentioned when another character says
‘you’, ‘he’, ‘they’, etc. They estimate their model correctly
identifies a character 69.21% of the time. Deleris et al. use
‘character mention’ information to build a directed social
network where the interactions are one of four kinds of signals:

• Direct Speech (e.g. A talks to B).
• Direct Reference (e.g. A says ‘I like you’ to B).
• Indirect Reference (e.g. A says ‘I like B’).
• Third-Party Reference (e.g. C says ‘A likes B’).

Each of these is an example of a directed interaction from
A to B. However, for the purpose of modelling networks
consistently between all three approaches, we assume all
interactions are reciprocated. We call the undirected networks
extracted using this approach the NLP networks.

III. METHOD

A. Overview

We compare the network extraction methods by simulating
narrative social networks, ‘extracting’ observed networks us-
ing the three extraction methods and comparing these observed
networks. We simulate social networks using a data-driven

Fig. 1. Simulation process: We model each season m in the observed data
to simulate underlying season networks U(m,k), where k = 1, . . . , nu

(subsection III-B). From each underlying season network we simulate scene
networks G

(m,k)
` for ` = 1, . . . , ns (subsection III-C). The scene networks

combine to generate episode networks G(m,k) (subsection III-D). From each
simulated episode network we extract three observation networks; a manual
network, a co-occurrence network and an NLP network (subsection III-E).

model. Simulation allows us to generalise the problem to any
narrative that has a similar underlying social network and to
generate large datasets for statistical analyses. The simulation
and extraction process is outlined in Figure 1 and the following
sections.

We estimate parameters for our model using the manual
networks data, then use the model to simulate nu underlying
season networks. For each season network, we use a random
walk process to simulate ns scenes. We then combine the
scenes to form a simulated episode. From each simulated
episode, we extract three observation networks resembling
the manual networks, co-occurrence networks and NLP
networks. We compare these simulated networks using the
network metrics outlined in subsection III-F.

B. Simulate season from data

The first step described by Figure 1 is simulating underlying
season networks from the observed data. To simulate networks
we need to model the seasons in the manual networks dataset.
We want, in addition to edges, to simulate edge weights, non-
negative integers representing the number of character interac-
tions. We notice there are significant differences between the
way the core characters of Friends (Monica, Rachel, Phoebe,
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Ross, Chandler and Joey) interact with each other (average of
81 interactions per pair per season) and with other characters
(average of 0.71 interactions per pair per season), and the way
other characters interact with each other (average of 0.0093
interactions per pair per season). We therefore propose a two-
class Poisson model for each season of the manual networks.

Let V (m) =
{
1, . . . , N (m)

}
be the set of characters in

Season m and w
(m)
ij ≥ 0 be the number of interactions

between character i and character j in Season m of the
manual networks dataset. We partition V (m) such that

V (m) = Vcore ∪ V (m)
non-core,

where Vcore contains the 6 core characters who are constant
across all seasons, and V (m)

non-core contains the
(
N (m) − 6

)
non-

core characters for Season m.
For the two-class Poisson model, assume each edge weight

w
(m)
ij in Season m of the manual networks dataset is a

random observation of

W
(m)
ij ∼ Poi

(
λ
(m)
CiCj

)
,

where

Ci =

{
1 if i ∈ Vcore,

0 if i ∈ Vnon-core.

We estimate λ
(m)
CiCj

using maximum likelihood estimation
with the manual network edge weights:

λ̂
(m)
CiCj

=



∑
i<j w

(m)
ij CiCj∑

i<j CiCj
if CiCj = 1,∑

i<j w
(m)
ij (1− Ci)(1− Cj)∑

i<j(1− Ci)(1− Cj)
if Cij = Ci + Cj ,∑

i<j w
(m)
ij (Ci + Cj − 2CiCj)∑

i<j(Ci + Cj − 2CiCj)
otherwise.

For each season m we simulate nu season networks

U (m,k) =
(
V (m), E(m,k)

)
,

where k = 1, . . . , nu and

E(m,k) =
{
W

(m,k)
ij | i, j ∈ V (m), i < j

}
.

Note that each simulation contains all characters V (m) from
Season m, but the edge weights are randomised. We generate
random edge weights between each pair of nodes from the
distribution

W
(m,k)
ij ∼ Poi

(
λ̂
(m)
CiCj

)
.

This method allows for edges with zero-weights. We take
zero-weights to mean there are no interactions between the
characters, which is equivalent to having no edge between the
characters.

C. Simulate scene from season

Given an underlying season network U (m,k), we wish to
sample an episode network, every episode being a sequence
of scenes. Following Fortuin et al. [23], we define a scene
as a story part with a constant set of characters in a constant
location. This approximation allows a consistent comparison
between methods. Each scene also contains a set of inter-
actions, so we can form a social network for every scene.
Interactions within a scene are dependent. For example, if
Joey talks to Monica, it is likely that Monica will then talk
to Joey. We capture this in the model by proposing a simple
random walk model for interactions in each scene. Note that
this approach is able to capture higher-order sequences of
interactions, dependent on the size of the dataset.

The random walk model randomly picks a starting character
in V (m), with probability proportional to the eigenvector
centrality of the character in U (m,k) (see subsection III-F).
This character randomly interacts with another character with
probability proportional to the edge weight between the
characters. That character randomly interacts with another
character, selected in the same way. The random walk process
continues until we reach nint,` interactions. We choose nint,`
based on the average number of interactions per scene in the
data from Table I. The next scene starts with a new random
starting character so that we have a fresh set of characters in
each scene.

Each scene ` consists of a set of characters C(m,k)
` and

interactions L(m,k)
` . Let n(m)

s be the rounded average number
of scenes per episode in Season m from our datasets. We
define the network of a scene ` sampled from U (m,k) as

G
(m,k)
` =

(
C

(m,k)
` , L

(m,k)
`

)
,

where ` = 1, . . . , n
(m)
s . As shown in Figure 1, we inde-

pendently simulate ns scenes with the random walk model
from each simulated season network U (m,k), then combine
the scenes to generate a random episode.

D. Generate episode from simulated scenes

We generate an episode by concatenating simulated scenes.
An episode sampled from U (m,k) is

G(m,k) =
(
G

(m,k)
1 , G

(m,k)
2 , . . . , G(m,k)

ns

)
.

The set of characters in G(m,k) are the union of the sets of
characters in the scenes, i.e.

⋃ns

`=1 C
(m,k)
` . The edge weight

between character i and j in G(m,k) is the sum of the
interactions between characters i and j in the scene networks,
which is zero if at least one of i or j was not in the scene.

E. Extract observation networks from simulated episodes

As in Figure 1, we extract three observed networks from
each simulated episode G(m,k); a manual network, a co-
occurrence network and an NLP network. We compare these
simulated networks using metrics outlined in subsection III-F.
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The manual network is built from the actual data so it is
assumed to be 100% correct. Therefore the simulated manual
network extracted from G(m,k) is G(m,k).

The co-occurrence network is obtained by creating a clique
for the characters in each scene. We add clique networks so
that edge weights correspond to the number of scenes two
characters are in together, as they would be in the automated
process.

The NLP network counts interactions similarly to the
manual network, however it simulates NLP by including
errors in the identification of characters. We model these errors
by assuming:

1) One character (the speaking character) has been identi-
fied correctly, but the character being spoken to may be
misidentified with probability q.

2) An incorrectly identified character is equally likely to
be any character in the episode except the speaking
character or correct character.

Chen and Choi [34] obtained a “purity score” of 69.21% in
their analysis of Friends, which they describe as the effective
accuracy of character identification and hence we set q = 0.3.
The impact of q as it changes is a potential direction for future
work. We call the process of incorrect character identification
“rewiring”.

In practice, the definition of an interaction (and hence
edge weight) differs in NLP networks compared to manual
networks. In the manual networks an interaction occurs
between two characters who see, talk to or touch each other,
whereas an interaction in the NLP networks occurs when two
characters talk to, mention or refer to each other. We do not
have this information in the manual networks, so we assume
that characters seeing and touching each other is equivalent to
characters mentioning and referring to each other.

F. Comparing observation networks

To measure how social network extraction method affects
narrative analysis we compare the simulated manual net-
works with the simulated co-occurrence and NLP networks,
using three types of network metrics;

1) Global metrics: size, total edge weight, edge density and
clustering coefficient.

2) Node/character metrics: degree, betweenness centrality,
eigenvector centrality, closeness centrality and local
clustering coefficient.

3) Edge/relationship metrics: edge weights.

These metrics are common in narrative social network analy-
sis, providing useful insight into social structure and important
characters and relationships. The aim is not to compare the
observation networks directly, but to investigate the effect
the different observation types have on the narrative analysis.
Consequently, we are more interested in understanding how
metrics correlate rather than systematic differences in their
value.

IV. RESULTS

We simulate nu = 10000 seasons using the two-class
Poisson model on Season m = 6, as the number of scenes per
episode in Season 6 is close to the mean number of scenes
per episode over all ten seasons. Figure 2 shows the social
network of interactions from Season 6. From each simulation,
we sample interactions from one episode using random walks
for each scene. Table I shows Season 6 of Friends has 25
episodes, 1491 interactions and 379 scenes. Therefore the
average episode in season 6 has approximately 60 interactions
and 20 scenes. We set ns = 15 scenes and nint,` = 4 for
every scene `.

Fig. 2. Network of Season 6 from the manually extracted network dataset.
The core characters have blue nodes and other characters have red nodes.
The width of the edges represent the edge weight and the size of the nodes
represent the node degree.

From each sample episode network we ‘extract’ the three
observation networks using the methods described in sub-
section III-E and compare using the metrics described in
subsection III-F. We find that there are differences in the value
of the metrics across observation networks, but the errors are
mostly systematic. We also checked that summaries of the
extracted networks such as the edge weight distributions are
also similar to their empirical counterparts. While the exact
values of metrics can vary across the different observation
networks, the important features in the narrative analysis (i.e.
the rankings and trends of metrics) would not be greatly
affected. The global metrics of the simulated co-occurrence
networks and NLP networks correlate to those of the as-
sociated manual networks. The centrality metrics (degree,
betweenness, eigenvector and closeness centrality) also have
high correlation with the same character metrics across the
simulated manual and random observation networks, but there
is wide variance in the correlations of the local clustering
coefficient of characters. The edge weights in the simulated
manual networks also correlate reasonably highly with the
edge weights in the simulated co-occurrence and NLP net-
works.
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A. Global metric comparison

Figure 3 show boxplots of the normalised size, total edge
weight, density and clustering for each network type. We
normalise size and total edge by dividing by the maximum
over the three network types.

Fig. 3. Box-plots of the normalised size, normalised total edge weight, edge
density and clustering coefficients of the manual, co-occurrence and NLP
networks from the 10000 simulations. The size and total edge weights are
normalised by dividing by the maximum.

The simulated manual and co-occurrence networks have
the same number of characters (and hence size) in each simula-
tion. However, it is possible in real data to see differences. We
find that the discrepancies in size of the real datasets are almost
always due to differences in what defines a character. For
example, ‘answering machine’ is counted as a character in one
co-occurrence network, but not in the corresponding manual
network. The size of the simulated NLP network is always
equal to or less than the size of the other simulated observation
networks, as our model can only rewire to characters within
the true episode. Characters are excluded if all the edges
connected to that character are rewired away and no edges are
rewired back to the character. This is more likely to happen to
characters that are connected to few edges in the first place,
and so the effect of the rewiring on the analysis is minimal.

The simulated manual and NLP networks have the same
number of interactions (and hence total edge weight) in each
simulation by construction. In practice there might be discrep-
ancies in total edge weights due to different definitions of
interactions as discussed in section II and subsection III-E. The
simulated co-occurrence networks have between 10% and
100% more interactions on average. We see this in Figure 3
through an increase in the normalised weight and edge density.

Interestingly, it is rare for the simulated NLP network to
have a lower edge density than the simulated manual network
even though the edges are rewired with equal probability to
any other character. This occurs because we only rewire one
interaction, not the entire edge with its weight.

However, there is very high correlation between the manual
network density and the other observation networks. The Pear-
son correlation coefficient between the simulated manual and

co-occurrence network edge densities is 0.96, and between
the simulated manual and NLP network edge densities is
0.95. While the co-occurrence networks are systematically
denser than the NLP networks, comparing social networks
using relative edge density is not greatly affected. Importantly,
the different extraction methods don’t distort trends.

Figure 3 shows that the simulated co-occurrence networks
are more clustered than the simulated manual networks.
This is not surprising as forming cliques for every scene
creates clusters. Figure 4 shows a scatterplot of the rela-
tionships, showing that the increase in clustering from the
simulated manual to co-occurrence network is smaller for
more highly clustered networks. This occurs because if the
manual network is already highly clustered, forming cliques
in every scene will add fewer interactions between characters.
Unclustered networks, however, will appear clustered using the
co-occurrence method, so analysis of clustering is not reliable
in co-occurrence networks. This is the largest non-systematic
distortion we see across the different techniques.

Fig. 4. Clustering coefficient of the simulated manual network containing all
interactions compared to simulated co-occurrence and NLP networks. The
dashed line shows y = x. The clustering coefficients of the co-occurrence
networks are larger than the manual networks because we create cliques in
every scene. The clustering of the simulated NLP networks is similar to the
clustering of the manual networks but there is variation.

The clustering coefficients of the simulated NLP networks
are similar to the manual networks (Pearson’s correlation
coefficient of 0.80), but there is some variation due to rewiring
interactions. Therefore, when analysing clustering in the net-
works, NLP networks are reliable in general.

B. Character metrics

Node/character metrics are used to investigate the role of
each character in the narrative. For example, Agarwal et al.
[32] determined that Alice was the main storyteller in Alice
in Wonderland, whereas Mouse’s main role was to introduce
other characters to Alice. Similarly Bazzan [5] showed that
in Friends, while Joey connects many characters, Monica
interacts the most with the five other main characters. We
use degree, betweenness, eigenvector, and closeness central-
ity, along with local clustering coefficient to assess relative
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character importance. As we care more about comparisons
between characters e.g. who is the most central, we examine
correlations between character metrics for different networks,
rather than the actual values. We use Spearman’s correlation
coefficient to investigate character rankings. Figure 5 shows
box-plots of these correlations for these metrics.

Fig. 5. Box-plots of the character metric correlations between the simulated
manual network and simulated co-occurrence and NLP networks from the
10000 simulations. The degree, eigenvector and closeness centrality correla-
tions are high with little variance. The betweenness centrality correlations are
reasonably high but with more outliers. The clustering correlations have a
large range and are extremely variable.

The network observation type affects each centrality simi-
larly. Correlations between centrality rankings of characters
in both simulated co-occurrence and NLP networks and
simulated manual networks are high (approximately 0.8) on
average, with little variance, meaning observation type does
not have a strong effect on character ranking centrality.

We see a similar pattern in the data. Figure 6 shows
betweenness centrality rankings for each character in the
manual and co-occurrence season networks. Joey has the
highest or second highest betweenness ranking in every season
except Seasons 1 and 4 (and Season 10 in the co-occurrence
network). While the exact value of the centrality may change
in the different datasets, the rankings are similar, so analysis of
character importance would be independent of network type.

The local clustering coefficient however is highly variable
in the simulated co-occurrence and NLP networks. The
correlations between the simulated manual networks and
observation networks are moderate and positive on average,
but range from -0.93 to 1. The large range of correlations
show that we should not trust automatically extracted networks
when looking at local clustering coefficients.

C. Relationship metrics

We use edge weights to investigate the importance of rela-
tionships between characters. We correlate three sets of edge
weights to asses the accuracy of different types of relationship
analyses:

1) All weights - including zero weights where there is no
edge,

Fig. 6. The betweenness centrality ranks of all core characters over the 10
seasons of Friends for the manual and co-occurrence network datasets.
Joey’s betweenness centrality rank is very similar in every season, with a
maximum difference of 2 in Season 10.

2) Non-zero weights - between characters that interact at
least once in at least one of the networks, and

3) Core weights - between core characters, as these are
usually the relationships we are most interested in.

Figure 7 shows the correlations between edge weights for the
simulated co-occurrence and manual networks and simulated
NLP and manual networks. Again, we use Spearman’s cor-
relation coefficient because we are interested in rank orderings
rather than actual values.

The correlation between all edge weights in the simulated
manual and co-occurrence networks are high with little
variance. There is more spread in correlation between edge
weights in the simulated NLP and manual networks. Corre-
lations decrease when we exclude zero-weight edges in both.

But the non-zero edge weight correlations are still high for
the simulated co-occurrence networks. This indicates that
while we frequently get the correct set of interactions, the
weights of those that interact are less accurate.

If we only compare the edges between the six core char-
acters we find the correlations for both random observation
networks vary greatly. Our results show the edge weight rank-
ings in simulated co-occurrence networks are more reliable
than in simulated NLP networks if we are interested in
all characters. However, if we only analyse the relationships
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Fig. 7. Box-plots of the edge weight correlations between the simulated
manual network and simulated co-occurrence and NLP networks from
the 10000 simulations. The correlation is higher for both random networks
when we include all edge weights. In both cases, the simulated co-occurrence
networks are more reliable than the simulated NLP networks. If we only
include edge weights between core characters there is a lot of variability in
the correlations between the networks for both observation types.

between core characters, the NLP networks are more reliable.
This is because the core characters are frequently in scenes
together but do not necessarily interact. This makes inferring
the relative strengths of each relationship difficult when we
only observe who is in the scene (i.e. from the co-occurrence
network), but NLP networks misdirect each interaction with
the same probability, so edge weights between core characters
are equally likely to be changed.

D. Social networks in Friends

We now apply these network construction methods to real
data. At http://friends-network.shinyapps.io/ingenuity app/ we
compare metrics from the real datasets to analyse the social
networks in Friends. Here we focus on one finding, namely
that the core Friends get less “friendly” over the ten seasons.

Figure 8 shows a scatterplot of the average number of
interactions between pairs of core characters in each season
of Friends as inferred from the co-occurrence dataset and the
manual dataset. As the series develops, the core characters
interact with each other less, i.e. the Friends get less friendly.
This is consistent between both datasets, with only slight
variations in the slope and variance of the line of best fit.

A possible explanation is that at the beginning of the series,
relationships between core characters are established, meaning
more core-core interaction. As the series develops, interactions
between core characters become repetitive, so these characters
interact with each other less, and extras become more impor-
tant. An interesting direction for future research is the extent
to which similar trends exist in other narratives.

V. CONCLUSION

The high correlation between the manually extracted net-
work metrics and the automatically extracted networks suggest
that for most narrative analyses we can extract the social
network automatically and achieve similar results to the more

Fig. 8. Scatterplot of the average number of interactions between pairs of
core characters in each season of Friends from the co-occurrence and manual
datasets. The dashed lines represent the line of best fit for the co-occurrence
and manual network average core interactions in red and blue respectively.
We see that although the individual datapoints vary, the trend is preserved.

time-consuming manual approach. However, this introduces
some errors. For most metrics these have minimal effects on
the comparison of global metrics over time, and character
importance. A small set of metrics related to clustering are
not reliable in automatically extracted networks.

We only investigated the effect of extraction method on one
television show Friends. With these comparison methods,
one could explore whether similar metrics appear in other
television shows, films, and novels.

The core Friends are intrinsic to that series, but extending to
other narratives means we have to identify core characters in
those narratives. A Stochastic Block Model [42] could be used
here to automatically identify the core group of characters. It is
interesting to consider how the extraction approach might bias
this identification, as some approaches to find core characters
might be perturbed by distortion in clustering.
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