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Abstract—Metal additive manufacturing is an important man-
ufacturing technique due to its cost effective and rapid prototyp-
ing capabilities. This technique has been widely used in various
industries ranging from aerospace to military defense. Depending
on different metal additive manufacturing settings, microstruc-
tures, such as cracks, would be generated for finished parts within
additive manufacturing procedures. Those microstructures could
lead to undesired defects, which may negatively impact the
quality of the fabricated products, especially when they are
delivered for mission critical tasks. This study developed a deep
learning based computer vision approach for microstructure,
especially crack recognition in images collected from Scanning
Electron Microscope (SEM). Through performing segmentation
of cracks in the SEM images of different magnifying factors,
manufacturing quality could be administered quantitatively.

Index Terms—Deep Learning, Additive Manufacturing, SEM,
Image Segmentation

I. INTRODUCTION

Additive manufacturing (AM) is a layer-by-layer rapid
prototyping method that has grown considerably in recent
years, especially for producing functional metal parts of crit-
ical applications in aerospace and military defense industries
[1]. During additive manufacturing processes, microstructures,
such as cracks, could be formed within the fabricated parts,
which impose unneglectable influence over the additive man-
ufacturing. Cracks could cause microstructural defects which
can compromise the mechanical properties and durability of
the completed products. Thus quality inspection, in terms of
crack recognition, for additive manufacturing parts is quite
significant when they are deployed for mission critical tasks.
Computer Vision technology is a scientific tool which endeav-
ors to make computers simulate human visual systems and
gain high-level understanding from digital images or videos
automatically. Convolutional Neural Networks (CNN), a rep-
resentative deep learning architecture, have been intensively
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deployed in different practical scenarios and have been demon-
strated to be able to accomplish various computer vision tasks
successfully [2], [3]. Recently, deep learning based techniques
have also be utilized in manufacturing quality management
[4]–[6].

The Scanning Electron Microscope (SEM) images with
different magnifying factors are able to exhibit the microstruc-
tures defects, such as cracks [7]. A deep learning based
computer vision method is developed for microstructure recog-
nition. In order to build the deep learning model for SEM
image analysis, a professionally labelled dataset is established
firstly. Thus ground truth for microstructures are gathered and
labelled in SEM images. After deep learning model training
is completed based on the established dataset, deep learning
inference phases perform pixel wise classification (or segmen-
tation) towards the testing images. In such a manner, a mask,
which depicts the contour of the microstructures,specifically
cracks, is generated for each SEM image.

II. METHODOLOGY AND EXPERIMENT RESULTS

The CNN training sets consists of sub-images of different
sizes (such as 10×10, 15×15, and 20×20, etc.) cropped from
SEM images. The sub-image size could be determined, as a
parameter, to yield best results. The class label of each sub-
image, either microstructures (foreground) or metal material
(background), is obtained from that of the center pixel of
the image. VGG16 [8] is used as deep learning model for
training and testing. VGG16 model training is fine-tuned
over Imagenet [9] pretrained model using SEM sub-images.
Magnifying Factor settings of SEM image dataset include:
178X and 424X. Both the foreground and background sub-
image datasets include around 1000 sub-images. For sub-
image datasets of different Magnifying Factors, 5-fold cross
validation has been executed and the average accuracy results
are showed in Table I. After the sub-image size is determined
based on the average validation accuracy, the fold of trained
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model, which yields the best validation performance result, is
chosen to perform crack mask prediction over the testing SEM
images.

TABLE I: Average Accuracy of 5-Fold Cross Validation Based
on Various Sub-image Sizes of Different Magnifying Factors

Sub-image Size 10x10 15x15 20x20
Average Accuracy (178X) 94.52% 91.53% 97.14%
Average Accuracy (424X) 99.72% 98.04% 98.46%

Based on Table I, for Magnifying Factor of 178X, sub-
image size of 20x20 has been selected for testing SEM image
segmentation of cracks; for Magnifying Factor of 424X, sub-
image size of 10x10 has been selected for testing SEM image
segmentation of cracks.

For the inference stage, the fine-tuned deep learning model
performs the binary classification (crack or background) to-
wards the sub-image, which has the pixel currently being
predicted in the center. In such a manner, binary masks are
generated for cracks in testing SEM images. SEM image
segmentation performance is evaluated using metrics defined
as below. TP is True Positive, TN is True Negative, FP is
False Positive and FN is False Negative.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =

(
Precision−1 +Recall−1

2

)−1

(4)

In the testing dataset, the number of SEM images for
Magnifying Factor of 178X is 64; the number of SEM images
for Magnifying Factor of 424X is 32. Inference positive
probability threshold is adjusted to make CNN model more
sensitive (achieve higher recall rate) to recognize the crack.
Table II shows the image segmentation results over the testing
SEM image dataset.

TABLE II: Average Performance Result
Magnifying Factor 178X 424X

Accuracy (Average) 95.63% 94.49%
Precision (Average) 10.65% 30.19%
Recall (Average) 38.67% 54.51%
F1Score (Average) 0.1671 0.3885

Figure 1 and Figure 2 shows the visualization result of
image segmentation of crack mask with different magnifying
factors.

III. CONCLUSION

The Convolutional Neural Network based Deep Learning
method has been proved to be able to implement image
segmentation for cracks over the SEM images of metal addi-
tive manufacturing accurately. More types of microstructures
for different materials would be explored to validate the

(a) SEM Image (b) Ground Truth (c) Predicted Mask

Fig. 1: SEM Image Crack Segmentation (178X)

(a) SEM Image (b) Ground Truth (c) Predicted Mask

Fig. 2: SEM Image Crack Segmentation (424X)

effectiveness for the method of deep learning. Also timing
performance needs to be improved to achieve lower latency
delay for defect analysis of additive manufacturing.
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