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Abstract—Airline on-time performance has always been a key
factor in evaluating the punctuality of the civil aviation industry
and has a profound impact on airlines, airports, and passengers.
As a result, there have been increasing demands for the systematic
analysis of flight delays and the development of accurate and
efficient tools for flight delay prediction. In this paper, a deep
learning framework based on graph convolutional networks and
multi-task learning is proposed for flight delay prediction. We
first use graph convolutional networks to capture the local and
global spatial dependencies among the airports. A multi-decoder
sequence-to-sequence model is developed to extract the temporal
correlation from the data. We further apply a hierarchical
graph fusion approach to combine features at different levels
of the network to exploit their cross-modality correlations. The
model is trained using a dynamic multi-task learning strategy to
predict flight arrival and departure delays at the same time to
boost the model’s generalization and performance. The proposed
model is evaluated on a large-scale public flight record dataset
against several state-of-the-art methods. The experimental results
demonstrate that our model can outperform all baseline methods
in predicting short to medium-term flight delays.

Index Terms—flight delay prediction; deep learning; graph
convolutional network; multi-task learning

I. INTRODUCTION

According to the US Federal Aviation Administration
(FAA), the total cost of delays in the US market has con-
stantly risen in the past years and reached 33 billion dollars
in 2019 [1]. As a result, the systematic analysis of flight
delays and the development of accurate and efficient tools
for flight delay prediction become important. Flight delay
prediction problem has been extensively studied in the past
decades. Conventional approaches construct mathematical or
statistical models to capture the correlation between selected
variables [2], [3]. Simulation tools are also developed to study
the impact of certain elements on the flight network delay [4]–
[6]. Recently, data-driven solutions such as machine learning
and deep learning become popular due to the exponential
growth of data availability and computing power [7]–[9]. Most
methods on flight delay prediction focus on a single airport or
airline [10], [11]. It is challenging to predict the flight delay
at a network-wide level due to the complexity of capturing
the correlation among a large number of airports. Existing
studies on network-wide flight delay prediction struggled to

fully exploit the spatial and temporal dependencies in the
data [12], [13].

To address the aforementioned limitations and challenges,
we propose a novel Graph Convolutional Network (GCN)
based deep learning model using multi-task learning strategy
(MTLG-Net) for network-wide flight delay prediction. MTLG-
Net takes advantage of both local and global spatial correla-
tions among airports in the graph network. The local correlated
GCN captures the direct connectivity among nodes, whereas
the global correlated GCN learns the hidden patterns modeled
by the global node-wise similarity. A multi-decoder sequence-
to-sequence (Seq2Seq) model is designed to capture the tem-
poral dependency from the input data. A hierarchical graph
fusion approach is adopted to combine features from different
input modalities. Due to the close relationship between arrival
and departure delays, we apply a dynamic multi-task learning
strategy to train the model on arrival and departure delay
prediction concurrently, which can substantially improve the
model’s performance. The main contribution of the proposed
work can be summarized as follows:

• A novel deep graph network that learns both local and
global spatial features. The local GCN focuses on the spa-
tial dependency between nodes with direct connections.
The global GCN captures the network-wide correlation
among nodes sharing similar characteristics.

• An effective sparse matrix normalization approach to
control the sparsity of the graph adjacency matrix that
reduces redundant node-wise correlation.

• A multi-decoder Seq2Seq model with dynamic multi-task
learning module that extracts the temporal correlation for
both arrival and departure delay and improves the model
learning efficiency.

• The proposed framework has been tested on a large-
scale public flight record dataset. The Experiment results
demonstrate the superior performance of our model com-
pared to other baseline methods.

This paper is organized as follows. In Section II, we conduct
literature review on existing works using deep learning for
flight delay prediction. Section III introduces the proposed
MTLG-Net and its main components. Section IV demonstrates
the experimental setup and results. Last but not the least,
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Section V summarizes the paper and suggests potential future
work.

II. RELATED WORK

Data-driven methods such as machine learning and deep
learning have been extensively applied in studying the flight
delay problem. Early methods in flight delay prediction mainly
focus on the airport and airline levels. Yu et al. adopted an
ensemble of deep neural networks, which include an improved
Convolutional Neural Networks (CNNs) with skip connection
and a combination of Densely Connected Convolutional Net-
works (DenseNet) [14] and Squeeze-and-Extraction Network
(SENet) to predict the flight delay on a single domestic
airport [15]. The authors also incorporated historical weather
data to provide contextual information. In another work,
Chakrabarty and Navoneel [10] utilized Gradient Boosting
technique to predict flight arrival delays for American Airlines
in 5 major air hubs. Our work further expands the problem
domain by modeling the network-wide flight delays.

Guo et al. [16] applied a dual-attention network that con-
tains graph-level and sequence-level attention mechanisms to
model the spatial and temporal dependencies between airports
in the network. The model is trained to classify the flight
delay into a specific 30 minutes length window among the 48
intervals in a day. Bao et al. [17] utilized K-means clustering
to divide the airports into four groups based on their average
hourly delay pattern. A deep neural network based on GCN
and Seq2Seq model is used to extract the spatial-temporal
features. In another work, Zeng et al. [18] designed a weighted
adjacency matrix based on the weighted sum of the spatial
distance and flight frequency among the airports. In this
paper, we utilize both local and global spatial correlations
to comprehensively learn the spatial dependencies from data.
Figure 1 demonstrates the architectural design of the MTLG-
Net. We will discuss each component in details.

III. METHODOLOGY

For the flight delay prediction problem, a convolutional
graph based on the flight network can be represented as
G = (X, y,E,A), where X represents the node features, y
is the average hourly flight delay, y ∈ RN where N is the
number of airports, E is the set of edges in the graph, and A
represents the graph adjacency matrix, A ∈ RN×N . A forward
pass in the GCN layer can be expressed as:

H [l+1] = σ(H lÃW l + bl) (1)

where H [l+1] and H l are the feature vectors at layer l+1 and
layer l, σ represents any non-linear activation function, and
W l and bl are the learnable weight parameter and bias term
of layer l, respectively. The normalized graph Laplacian Ã is
intended to prevent numerical instability and can be expressed
as follows.

Ã = D− 1
2AD− 1

2 + I (2)

where D is the degree matrix and I represents the identity
matrix, which functions as a self-loop of the target node.

A. Local-Global Graph Convolutional Networks

Two types of GCNs are leveraged in MTLG-Net to learn
the spatial correlations between airports from both local and
global levels. The local correlated GCN is a directed graph
based on each airport’s flight route connectivity. On the other
hand, the global correlated GCN uses an undirected graph to
represent the node-wide similarity.

The local correlated GCN uses adjacency matrix Alocal ∈
RN×N to represent the connectivity among airports. If there
exists a flight route between airport i and airport j, then entry
aij in Alocal is set to one, otherwise zero. Therefore, the
normazlied graph Laplacian for local correlated GCN Alocal

can be expressed as follows:

Ãlocal = D− 1
2AlocalD

− 1
2 + I (3)

and the graph Glocal = (X, y,E, Ãlocal) is obtained for the
local correlated GCN.

The adjacency matrix of the global correlated GCN is
designed to contain the pair-wise airport similarity score,
which is calculated based on the airport’s annual average flight
and passenger volumes. More specifically, the similarity score
between two airports can be expressed as the cosine similarity
between their corresponding vector representation of the two
variables:

Sij =
vi · vj

∥vi∥ ∥vj∥
(4)

where vi and vj are the similarity vectors for airport i and j.
The matrix produced by Equation (4) leads to very high

computational complexity since the adjacency matrix is too
dense. On the other hand, if the matrix becomes too sparse,
some useful information may be lost. To address this issue,
we develop a sparse matrix normalization approach to replace
the conventional normalized graph Laplacian. The proposed
sparse matrix normalization approach normalizes the matrix
value so that each element’s value is between 0 and 1. It
also enforces matrix sparsity by removing node connections
that fall below the standard deviation threshold. Therefore, the
normalized global correlated GCN’s adjacency matrix can be
expressed as:

Ãij
global =


(eSij−σ−1)2∑ ∑N
ij(e

Sij−σ−1)2+ε
, i ̸= j and Sij − σ > 0

0, otherwise
(5)

where Sij is the similarity score between airport i and airport
j. If we define the flattened similarity matrix as a 1D array
Ŝ = [S11, S12, S13, ...SNN ], Ŝ ∈ RN2

, then σ is the standard
deviation of Ŝ and ε is a small constant to reduce the numerical
instability.

The normalized global correlated GCN adjacency matrix
with self loop can be expressed as:

Ãglobal = Âglobal + I (6)
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Fig. 1. An overview of the proposed MTLG-Net.

LSTM LSTM LSTM...


LSTM LSTM LSTM...

Forward


Backward


Raw input vectors

Intermediate vectors

Fig. 2. Network structure of the residual Bi-LSTM layer used in our model.
Each arrows indicate the direction of the data flow and ⊕ is the addition
operation.

Finally, the final graph Gglobal = (X, y,E, Ãglobal) is
obtained for the global correlated GCN. By utilizing the local
and global correlated GCNs, the model could capture the
local and global spatial correlations between airports without
sacrificing much on the computation complexity.

B. Multi-Decoder Sequence-to-Sequence Model

A multi-decoder Seq2Seq model with the attention mod-
ule is designed to capture the temporal correlations among
flight delay patterns and generate the prediction results in
multiple consecutive time intervals. The encoder is composed
of one residual bi-directional long-short-term memory (Bi-
LSTM) layer, where the sequential input signals are passed
down to produce the intermediate context vectors. Figure 2
demonstrates the structure of the residual Bi-LSTM layer used
in the multi-decoder Seq2Seq model. An attention module [19]
is applied to generate the attention context vectors that replace
the encoder’s final hidden state output. It helps the model re-
tain more information when processing long input sequences.
The context vectors are fed into two separate decoders, namely
the arrival delay decoder and the departure delay decoder. Each
decoder is constituted of one LSTM layer that produces the
prediction results for arrival and departure delays, respectively.

An overview of the proposed multi-decoder Seq2Seq model is
shown in Figure 3.
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Context
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Fig. 3. Network structure of the multi-decoder Seq2Seq model used in this
model. x1, x2 and xt are the input sequence from different time step; yt+1,
yt+2 and yt+n are the output of arrival delay task decode, zt+1, zt+2 and
zt+n are the output of departure delay task decoder. The context vector ct+1,
ct+2 and ct+n are generated by the attention module, which serve as the
initial input for the decoder. The two tasks share the same encoder.

C. Hierarchical Graph Fusion Module

The cause of flight delays is complex and can be contributed
to various factors. It is essential to leverage relevant contextual
information to complement the flight record data. Variables
that significantly impact air traffic may include flight date
and time, flight volume and weather conditions. A common
practice for multimodal fusion is to simply concatenate all
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feature vectors at the early stage. However, this ignores the
cross-modality interactions among input sources. In order to
exploit the inter-modality correlations among all features, we
adopted a hierarchical graph fusion (HGF) approach from
our previous work [20]. HGF utilizes a tree-based graph to
combine modalities on different levels. The nodes on each
level represent different modality combinations and the edge
weights measure the similarity between each pair of nodes.
The complexity of the combination increases as the graph level
gets deeper. The level representation vectors are generated by
the weighted sum of all cross-modality interactions in that
level. The final output of HGF is the concatenation of all level
representation vectors.

D. Dynamic Multi-task learning Module

Multi-task learning improves the model generality by train-
ing multiple tasks at the same time, which also reduces the
potential of overfitting. In MTLG-Net, a dynamic multi-task
learning (DMTL) [20] strategy is applied to help the model
predict flight arrival and departure delays simultaneously.
DMTL works on both task and iteration levels. The task-level
component dynamically adjusts the loss weight distribution
for each task during the training phase. It guides the model
in prioritizing tasks with a less aggressive learning rate. The
Iteration-level mechanism incorporates a task weight assign-
ment scalar that applies to all tasks and tries to re-balance the
weight assignment at each iteration based on the final training
loss.

IV. EXPERIMENTS AND ANALYSES

A. Datasets

Flight Record Data: The Reporting Carrier On-Time Per-
formance data published by BTS (Bureau of Transportation
Statistics) is a large-scale public dataset that contains the on-
time performance information of flights from all reporting
carriers. Relevant attributes include flight date, origin and
destination (OD), airport id, actual arrival time, actual depar-
ture time, arrival delay, departure delay, flight distance, etc.
Records from January 2017 to December 2021 are collected,
including 30,940,455 entries, 433 airports, and 802 OD pairs.
During the data cleaning process, airports with less than 50
average daily flights, OD pairs with less than 10 average daily
flights, and data entries with abnormal values (flight distance
less than 100 miles and longer than 3000 miles except those
OD pairs containing Hawaii) are dropped. The cleaned dataset
contains 25,312,665 entries, 87 airports, and 294 OD pairs.
Furthermore, we aggregated the records at the airport level,
split the data into 24-hour intervals based on the actual arrival
time, and obtained the average hourly arrival/departure delays
for each airport.

Meteorological Data: The National Oceanic and Atmo-
spheric Administration (NOAA) provides historical meteoro-
logical data collected at weather stations across the US. It
contains the average hourly record regarding air temperature,
precipitation, sky covers and clouds, sunshine, water, weather
type, and wind speed. In this paper, we collected data from

weather stations near the selected 87 airports and utilized air
temperature, precipitation, and wind speed as part of the input
variables.

B. Experimental Setup

The dataset is separated into training, validation, and test
sets with 60%, 20%, and 20% split. All hyperparameters are
tuned on the validation set. ϵ used in calculating sparse matrix
normalization is set to 0.1 empirically. Adam [21] is used
to optimize the training process and the initial learning rate
is set to 0.01. Early drop is applied to prevent overfitting.
Input vectors from different modalities are padded with zeroes
to ensure a uniform dimension before being fused by HGF.
The Mean Average Error (MAE) is selected as the metric to
evaluate the model performance:

MAE =
1

N

N∑
i=1

ŷi − yi (7)

where ŷi is the prediction value and yi is the ground truth.

C. Experimental Results

1) Overall Comparison: We include several baseline meth-
ods to compare with the proposed MTLG-NET for flight delay
and arrival prediction:

• Autoregressive Integrated Moving Average (ARIMA): a
statistical analysis model that predicts future value based
on the value from the previous time step. It has been used
extensively to solve traffic flow related problems.

• Long Short-Term Memory (LSTM): an RNN based
model utilizing a series of gate units to control the
information flow.

• Sequence-to-Sequence Model (Seq2Seq): an encoder-
decoder deep learning model using several LSTM layers
for time series data prediction.

• AG2S-Net [17]: a deep neural network utilizing GCN and
Seq2Seq model to predict flight delays in multiple hours
intervals.

• DGLSTM [18]: a graph-based deep learning model that
employs two adjacency matrices to represent the spherical
distance and demand relationship among all airports.

Table I and Table II contain the results of the flight ar-
rival and departure delay predictions in ten consecutive hour
intervals, respectively. It can be observed that all methods
produce more accurate results on short-term intervals. This
can be attributed to the lack of historical patterns in long-
time intervals. ARIMA performs poorly comparing to other
methods. As a relatively simple model, ARIMA lacks the
capacity of capturing more complex time series patterns.
LSTM and Seq2Seq models yield a substantial improvement
comparing to ARIMA, with Seq2Seq2 leading LSTM’s re-
sults, especially in long-term predictions. Overall, time series
prediction models such as ARIMA, LSTM, and Seq2Seq
demonstrate inferior performance since they only capture the
temporal dependency. GCN-based state-of-the-art models like
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TABLE I
PERFORMANCE COMPARISON OF MTLG-NET WITH DIFFERENT BASELINES FOR AVERAGE HOURLY ARRIVAL DELAY PREDICTION

Method MAE
1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 9.331 10.021 11.263 12.834 13.097 14.765 15.932 16.283 17.727 18.316
LSTM 8.915 9.244 10.035 11.037 12.543 13.297 14.504 15.801 16.424 17.688
Seq2Seq 8.524 8.980 9.453 10.041 11.224 12.875 13.662 14.017 15.239 16.433
AG2S-Net 6.323 6.847 7.225 9.988 10.320 12.089 13.095 14.228 14.276 14.301
DGLSTM 5.013 5.877 7.044 9.635 10.098 11.767 12.237 12.768 12.980 13.176
MTLG-Net 4.573 4.842 5.925 7.852 9.374 10.237 11.535 11.570 11.335 11.659

TABLE II
PERFORMANCE COMPARISON OF MTLG-NET WITH DIFFERENT BASELINES FOR AVERAGE HOURLY DEPARTURE DELAY PREDICTION

Method MAE
1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 9.223 10.010 11.152 12.836 13.041 14.460 15.892 16.290 17.517 18.411
LSTM 8.925 9.237 10.031 11.997 12.493 13.195 14.204 15.752 16.372 17.851
Seq2Seq 8.525 8.930 9.517 10.031 11.324 12.759 13.709 14.136 15.231 16.333
AG2S-Net 6.401 6.848 7.210 9.979 10.293 12.067 13.126 14.231 14.273 14.310
DGLSTM 5.011 5.863 7.041 9.584 10.123 11.742 12.347 12.744 12.982 13.241
MTLG-Net 4.499 4.831 5.917 7.858 9.291 10.239 11.485 11.573 11.258 11.536

TABLE III
THE ABLATION STUDY OF EACH COMPONENT’S IMPACT ON FLIGHT ARRIVAL DELAY PREDICTION

Method MAE
1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

w/o global GCN 4.988 5.237 6.310 8.247 9.801 10.645 11.984 11.973 12.712 12.680
w/o MTL 4.601 4.875 6.011 7.903 9.408 10.288 11.594 11.583 12.425 12.394
w/o DMTL 4.725 5.023 6.176 8.062 9.603 10.471 11.754 11.772 12.548 12.609
w/o HGF 4.923 5.230 6.297 8.216 9.779 10.639 11.980 11.947 12.700 12.698
MTLG-Net 4.573 4.842 5.925 7.852 9.374 10.237 11.535 11.570 11.335 11.659

AG2S-Net and DGLSTM performed noticeably better as they
consider both spatial and temporal correlations in the data.

Overall, our proposed MTLG-Net outperforms all baseline
methods in the comparisons. It achieves 29.71% lower MAE
for the first-hour delay prediction than AG2S-Net and 10.22%
lower than DGLSTM. Even for the extreme ten-hour interval
delay predictions, our model still outperforms all baseline
methods.

2) Ablation Study: We also conducted ablation studies to
evaluate the effectiveness of each main component in MTLG-
Net.

• Effect of global correlated GCN (w/o global GCN): The
global correlated GCN is designed to capture the global
spatial dependency. It helps the model learn the hidden
patterns that the local correlated GCN does not cover. In
this test, the global correlated GCN is removed from the
model.

• Effect of multi-task learning (w/o MTL): To verify the
effect of multi-task learning, we only train the model to
predict the arrival delay and use a single decoder in the
Seq2Seq model.

• Effect of dynamic multi-task learning (w/o DMTL): To
test the effect of DMTL, the w/o DMTL variant only
uses a conventional multi-task learning strategy. It assigns
equal loss weights to the tasks when their losses are
aggregated to generate the final loss.

• Effect of hierarchical graph fusion (w/o HGF): To eval-

Fig. 4. Arrival delay prediction performance comparison for 10 hours intervals

uate the effect of HGF, we replace HGF with a simple
concatenation operation in the w/o HGF test.

As shown in Table III, the average MAE of the w/o
global GCN test increases by 6.38%, demonstrating the most
significant impact on the model performance among all vari-
ants. It proves that learning global spatial correlations could
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Fig. 5. Departure delay prediction performance comparison for 10 hours
intervals

substantially enhance the model’s capability to capture the
hidden traffic patterns. Next, the w/o HGF variant produces the
second-highest average MAE (6.19%). It shows that replacing
HGF with simple feature concatenation limits the model’s
ability to capture the cross-modality interactions among input
sources. Furthermore, in w/o MTL and w/o DMTL tests, the
w/o MTL test achieves lesser impact than the w/o DMTL
test. This shows that arbitrarily assigning equal loss weights
for the tasks may not achieve the full potential of multi-task
learning. The DMTL approach could efficiently optimize the
model training process and achieve better results.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel multi-task graph-based
deep learning framework for flight delay prediction. Two
GCNs are introduced to capture the local and global spatial
dependencies among airports. A hierarchical graph fusion
approach is applied to fuse flight and meteorological data
and exploit their cross-modality dependency. The multi-task
learning strategy is adopted to predict the flight arrival and
departure delays simultaneously to boost the model’s gener-
alization capability. A dynamic multi-task learning strategy is
developed to optimize the model learning process by automat-
ically adjusting the weight distribution between the two tasks.
The proposed MTLG-Net is evaluated on a large-scale carrier
on-time performance dataset against several baselines and
state-of-the-art methods. Our model outperforms all baselines
and demonstrates great performance in multi-time step flight
delay prediction. In future studies, the proposed model could
be applied to other spatio-temporal forecasting tasks.
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