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Accurate real-time models for estimating the current state of 

an engine-generator set (genset) can be built based on measured 

mechanical vibration data. There is typically a significant 

disparity between the amount of data measured during normal 

and abnormal operation of a genset. Sufficient measured data to 

build a model for detecting and recognizing abnormal operation is 

rarely available. The lack of data measured during abnormal 

operation can be compensated, e.g., by creating more data 

through simulations. The focus of this study is on producing more 

realistic simulated vibration data by adding variations in the 

excitation forces used as input for the simulation. The added 

variations are based on the integration of previously measured 

cylinder pressure and rotational speed data from similar gensets 

as the simulated one. The effect of using varying input data 

on the simulated vibration responses of a genset is studied by 

extracting features and training operational state classifier 

models based on them. The extracted features and the 

classifier model results are compared with respect to the 

measured mechanical vibration data from a similar genset as the 

simulated one. The results show that the simulated responses 

resemble the measured ones. However, the comparative 

validation results reveal significant differences between the 

simulated and measured responses. Thus, further investigation 

and development is needed regarding production of the simulated 

mechanical vibration data. 

Keywords—state estimation, classification, finite element 

method, simulation, mechanical vibration data, cylinder pressure  

I. INTRODUCTION

Engine-generator sets (gensets) comprise a generator and an 
engine. Gensets are commonly used in remote or developing 
areas where, depending on the need, they can act as the primary 
or supplementary source of energy [1]. Another typical 
application for genset-based power plants is to serve as an 
emergency power supply in the event of a failure in the main 
power source [1]. 

Vast amounts of sensor-based measurement data are 
gathered from the gensets, and the extracted information is used 
to maximize and optimize the productivity of the machines [2]. 
Nevertheless, only little is known and implemented into usage 
regarding the data-based condition monitoring of the genset 
structures. The main premise is that the effective and efficient 
state recognition can be based on the extracted characteristics 
and features of the genset structures. Regarding the dynamic 
behavior of the genset structures, the extracted features are 
typically dynamic features such as natural mode shapes and the 

respective natural frequencies, signal statistics, or advanced 
physics-based indicators [3]. At the first level of condition 
monitoring [4], the discrete states of gensets could be presented 
as binary (intact/fault) or continuous (e.g., estimated power 
output level) variables. It is evident that the efficient state 
recognition procedures for genset structures require 
implemented and verified methods that are applicable for real-
time operation [5]. 

Junttila [6] introduced methods for near real-time state 
recognition of the power output level and the transient abnormal 
operation of a Wärtsilä 20V31SG genset in his master’s thesis. 
The presented methods were based on measured mechanical 
vibration data. The thesis proved that very accurate and fast 
classification of different power output levels of the studied 
genset is possible with machine learning (ML) models trained 
using traditional classifier algorithms such as support vector 
machines (SVM) or even linear regression (LR). The simple fact 
that elevating the power output increases the internal forces of 
an internal combustion engine (ICE), and the cyclic nature of the 
operation of an ICE at steady state, i.e., virtually constant 
rotational speed and virtually constant power output, were 
utilized when extracting the features for training the classifier 
models. This paper proposes a continuation of Junttila’s 
master’s thesis. It was proven in [6] that transient abnormal 
operation of a genset can be efficiently distinguished from 
normal operation based on the measured vibration response. 
Development of ML models capable for novelty detection [7], 
i.e., recognizing different types of abnormal operation of a
genset, were identified as future work in [6]. However, the lack
of labelled mechanical vibration data measured during abnormal
operation of a genset stands in the way of training such models.
A solution could be filling the shortage by simulated data.

The Wärtsilä 20V31SG engine is a four-stroke 20-cylinder 
turbocharged V-engine operating on spark-ignited gaseous fuel. 
The diameter of the cylinders is 31 cm. The 20V31SG genset is 
used in the electric power industry as the main component of 
engine power plants, typically there being more than one set in 
a single plant. For a 50 Hz utility frequency, the engine has a 
nominal rotational speed of 750 rpm with a maximum 
continuous power output of 11 MW. Marine applications for 
similar engines also exist [8]. 

Genset vibration simulations at Wärtsilä have typically been 
performed as steady-state analyses in frequency domain. 
Reference [9] contains an overview of the history of structural 
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dynamic simulation at Wärtsilä from the perspective of engine 
research and development, with a substantial number of further 
references. The excitation forces used as input for the typical 
genset vibration simulations have been defined assuming 
constant engine rotational speed and constant engine loading. In 
other words, the cylinder pressure curve used for calculating the 
excitation forces at a specific power output level is invariant 
between all the cylinders of the engine and between all the 
engine cycles. In a linear system, such as the studied one, this 
obviously leads to the simulated responses reaching and 
maintaining a vibrationally steady state and consequently to a 
trivial classification problem as each simulated power output 
level has an individual and invariant vibration response. 

Therefore, the focus of this study was on developing the 
methods for calculating the excitation forces used as input for 
the vibration simulations to be able to produce more realistic 
simulated mechanical vibration response data than previously. 
To validate the simulated data produced in this study it was 
compared with corresponding measured data. The validation 
was done using data representing the normal operation of the 
genset as it was the only kind of labelled data available. In this 
study, normal operation of the genset refers to the state of 
virtually constant power output at virtually constant engine 
rotational speed over a period of at least some minutes. The 
different states or classes of normal operation of the genset refer 
to different levels of constant power output, which can be 
expressed for example as a percentage of the rated power of the 
genset. 

The objective of the study was therefore to produce realistic 
simulated mechanical vibration response data of the different 
states of normal operation of the genset and validate the 
simulated data by comparing it to corresponding measured data.  
To reach the goals, variations were introduced in the engine 
rotational speed and in the cylinder pressure curves used for 
calculating the excitation forces used as input for the simulation. 
The variations are based on measured engine rotational speed 
and cylinder pressure histories, and thus, an essential part of the 
simulation input data is an integration of reused measured 
cylinder pressure and rotational speed data. 

The methods used for defining the input, as well as the 
simulation model and analysis type are described more 
thoroughly in the following chapter. The next chapter also 
includes a short description of the feature extraction and normal 
operational state classification processes used in this study. The 
third chapter contains the results of the comparisons between the 
extracted features from the measured and simulated mechanical 
vibration data as well as the results of the comparisons between 
the operational state classification models built based on the 
extracted features. The results are discussed in detail in the 
fourth chapter which is followed by the conclusions presented 
in the fifth chapter. 

II. METHODS 
This chapter presents the definition of the input, as well as 

the simulation model and analysis type. Finally, a short 
description of the feature extraction and normal operational state 
recognition processes are given. 

A. Finite element analyses and model 

The finite element (FE) simulation model of the genset 
shown in Fig. 1 contains an engine, a generator, and a base frame 
which have been geometrically discretized primarily into 
tetrahedral elements. The discretized engine has been condensed 
into a superelement (substructure) to reduce computational cost, 
with only visualization elements shown. The genset model 
utilizing the superelement has approximately 14 million degrees 
of freedom. The mass and length of the model are approximately 
180 000 kg and 15 m, respectively. The model has agreed well 
with measured natural vibration frequencies. Simulated 
vibration velocities during engine operation evaluated at 
standardized locations on the genset have agreed sufficiently 
with measurements, with occasional significant differences. 
Modifying the existing FE model was not in the scope of the 
work. The simulation software was Abaqus by Dassault 
Systèmes. 

The mechanical loading in a genset vibration simulation is 
the excitation forces caused by the operation of the engine. 
Typically, the excitation forces are applied to the cylinder heads, 
the cylinder liners, and the main bearings of the engine, and they 
consist of the gas forces caused by the cylinder pressure and of 
the mass forces accounting for the inertia of the slider-crank 
mechanism, which is not physically moving in the simulation to 
reduce computational cost. 

Factors affecting the excitation forces are e.g., the cylinder 
pressure over the two-revolution four-stroke cycle as a function 
of crank angle (cylinder pressure curve), dimensions and inertia 
properties of the slider-crank mechanism components (pistons, 
connecting rods, crankshaft, etc.), cylinder firing order, V-angle, 
and rotational speed. The elasticity of the components, most 
notably the bending and torsional deflections of the crankshaft, 
is not considered in the excitation definition. The Python 
programming language was used to generate the excitations. 

Genset steady-state vibration simulations at Wärtsilä have 
typically been performed in frequency domain, with a common 
cylinder pressure curve for all cylinders and with a constant 
rotational speed. Here the simulations were performed in time 
domain with variable cylinder pressure curves and variable 
rotational speed. As in frequency-domain cases, the simulations 
were linear and utilized superposition of natural vibration 
modes. The excitation forces for this study were defined based 
on engine rotational speed and cylinder pressure curves 
measured during normal operation. Measured cylinder pressure 
curves were available at power levels 100%, 85%, and 75% of 

 
Fig. 1: FE simulation model of the genset, with the engine as a 
superelement. 
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the rated power. The excitation forces were defined for the 
aforesaid power levels. 

Analyzing the measured engine rotational speed histories 
shows that they contain, as expected, Fourier components at the 
multiples of the engine cycle frequency (high-frequency 
content) and at significantly lower frequencies (low-frequency 
content). The former is assumed to be principally caused by 
local torsional deflection of the crankshaft at the measurement 
location and therefore not significant considering the rotational 
speed of the complete shaft line of the genset. The lengths of the 
signals, mean values and the standard deviations (SDs) of the 
measured rotational speed histories of the studied genset at 
different power output levels as well as the SDs of the measured 
rotational speed histories after removing all frequency 
components over 3 Hz are presented in Table I. 

For each analyzed power level (100%, 85%, 75%), a 
synthetic rotational speed history with a duration of 240 s and a 
time step of 1/2048 s was created using the measured rotational 
speed data as a reference. Only the low-frequency content of the 
measured rotational speed was considered. The synthetic 
histories are visualized in Fig. 2 and the measured ones in Fig. 3. 
Since the low-frequency content had too low frequencies to be 
extracted by available fast Fourier transform (FFT) tools, 
engineering judgement was utilized by choosing appropriate 
low-frequency sinusoids, with the most dominant one having a 
frequency of 1/60 Hz, to create histories that sufficiently 
resembled the trend curve of the measured rotational speed. The 
trend curve of the rotational speed in a steady state is constant in 
principle but non-constant in practice due to fluctuations that are 
common in the operation of an ICE. The synthetic rotational 
speed histories had the same set of frequencies and amplitudes 
but different phases. 

 To estimate the variation of cylinder pressure curves 
between cycles, the relative standard deviation of peak cylinder 
pressure (4.2%) was extracted from an available cylinder 
pressure history measured from one cylinder of a different 
Wärtsilä engine. Reference [10] summarizes the essentials on 
cylinder pressure fluctuations and the forces acting on the ICEs. 

 Each synthetic rotational speed history was differentiated 
with respect to time and then scaled such that the mean was 
equal to unity and the standard deviation equal to the measured 
relative standard deviation of peak cylinder pressure. The 
resulting global scaling factor history for cylinder pressure 
approximated the dependency between rotational acceleration 
and combined cylinder pressure over all cylinders. The history 
was divided into engine cycles, and for each two consecutive 
cycles (four revolutions) the mean scaling factor value was 
determined. 

 Additional local cylinder-specific scaling factors for 
cylinder pressure were created for each engine cycle by 
randomly sampling a normal distribution having a mean of unity 
and a standard deviation equal to the measured relative standard 
deviation of peak cylinder pressure. Furthermore, the sample 
mean was made equal to unity for each engine cycle. The 
purpose of the local scaling factors was to ensure that the 
cylinder pressure curve in the simulations varied not only 
between engine cycles, but also between cylinders within an 
engine cycle. 

TABLE I.  MEASURED ROTATIONAL SPEED HISTORIES 

Data properties 
Power output level (%) 

50 90 95 100 

Length (min) 42 28 85 96 

Mean (rpm) 749.74 749.89 750.13 750.09 

SD (rpm) 1.79 2.66 2.82 2.93 

SD filtered (rpm) 0.48 0.62 0.66 0.47 

An averaged measured cylinder pressure curve typically 
used in a frequency-domain simulation was used as a reference 
curve for all cylinders, with one reference curve per power level. 
The scaling of the reference cylinder pressure curve was 
performed using a modified Tukey window, with which scaling 
equal to the value of the scaling factor occurred near the peak 
cylinder pressure and scaling of unity occurred near the low-
pressure areas of the curve, with a smooth transition in between. 
This is visualized in Fig. 4. 

The scaling factor for a cylinder cycle was determined by 
multiplying the current two-cycle mean of the global scaling 
factor with the current local cylinder-specific scaling factor. The 
current values for these two factors were the values at that 
engine cycle which was ongoing when the peak pressure for the 
examined cylinder occurred at the examined cylinder cycle. 
Here the difference between an engine cycle and a cylinder cycle 
is that the first engine cycle started from the beginning of the 
analysis, but the starting point of a cylinder cycle was the 
beginning of its intake stroke. The starting points of cylinder 

 
Fig. 2: Synthetic rotational speed histories. Updated, i.e., including the 
low-amplitude high-frequency components (not visible at this scale). 
 

 
Fig. 3: Measured rotational speed histories. 
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cycles varied per cylinder since the cylinders generally do not 
operate in the same phase. 

For each power level, the engine torque history was 
calculated with the excitation force Python script using the 
synthetic rotational speed history and the cylinder pressure 
scaling factor histories. The engine torque history was then 
integrated with respect to time and scaled to sufficiently match 
the original synthetic rotational speed history. The result was 
effectively the rotational speed history but including high-
frequency components. However, there was only one such 
component present (and its multiples, but with very low 
amplitudes) due to the characteristics of the engine balance and 
since the crankshaft was idealized as infinitely rigid in the 
excitation definition. This component was the firing frequency 
(here five times the rotational frequency) and its amplitude was 
small relative to the low-frequency content. For better 
conformance with the original synthetic rotational speed history, 
the high-frequency component and some of its lowest multiples 
were isolated using a Butterworth filter and then added to the 
original synthetic rotational speed history. 

The final excitation forces were created using the excitation 
force Python script again with the updated synthetic rotational 
speed histories. The forces were written into text files in a format 
supported by the FE simulation software. The vibration 
simulations of the genset were executed by first extracting an 
appropriate number of natural vibration modes, after which a 
mode-based forced vibration analysis in time domain was 
performed for each engine power level. The excitation forces 
and the time-domain analyses had the same time step as the 
synthetic rotational speed histories. Vibration acceleration data 
from 57 measurement points of interest were extracted from the 
simulation result files using a Python script. 

B. Feature extraction and operational state recognition 

models 

The operational state recognition process for the studied 
genset using mechanical vibration data has been described in 
detail in [6]. Only the most important parts of the process 
considering this study are presented in this chapter. As 
mentioned in the introduction the classification of different 
power output levels of the studied genset can be done very 
accurately in near real-time using ML models. Classifiers 

trained using the SVM algorithm gave the most accurate 
predictions but were significantly slower in predicting compared 
to classifiers trained using other algorithms. In [6] the LR 
algorithm was proven to be very efficient for training both 
accurate and fast-predicting classifiers and was therefore used 
for building the operational state recognition models of this 
study. 

Two different functions were used for the feature extraction 
from the simulated mechanical vibration data. The models 
trained using the feature values extracted with the two functions 
gave the most accurate classification results according to [6]. 
The first of the feature extraction functions was used to calculate 
the signal power (feature name: PWR) and the second was used 
to calculate the peak vibration amplitude at the frequency 
equivalent to 1.5 times the rotational frequency of the engine 
(feature name: RF15). 

The feature values were extracted from short signal 
segments of lengths from one to seven multiples of the length of 
an engine cycle. At 750 rpm, i.e., the rated rotational speed of 
the studied genset, one engine cycle (four-stroke cycle) takes 
0.16 seconds. Using shorter signal segment gives predictions 
that are closer to real-time but on the other hand, the prediction 
accuracy is lower due to greater sensibility to the fluctuations in 
the operation of the engine. 

Feature values were defined for the 57 examined 
measurement points of interest. The two feature extraction 
functions were applied separately for the simulated mechanical 
vibration histories in the three cartesian directions and using the 
seven different signal segment lengths. Therefore, 42 (two 
functions × three cartesian directions × seven segment lengths) 
different feature values were defined for each measurement 
point. Operational state recognition models were built separately 
for each point and for each of the seven segment lengths to 
classify the three analyzed power levels (100%, 85%, 75%). The 
features extracted using the two feature extraction functions 
were used to train the operational state recognition models both 
separately and combined, i.e., three different feature selections 
(PWR, RF15, both). In total 1197 models (57 measurement 
points × seven segment lengths × three feature selections) were 
built. 

Measured data was available only from four different 
locations (P1, P2, P3, and P4). The measurement points P1, P3, 
and P4 were located on different parts of the generator and the 
measurement point P2 on the base frame under the generator. 
Therefore, the validation of the simulated mechanical vibration 
data was done by comparing them with the corresponding 
measured data from the four points. Measured data was 
available from the following six levels of power output of the 
rated power of the genset: 100%, 95%, 90%, 75%, 50%, and 0%. 

III. RESULTS 
The comparative validation results between the measured 

(M) and the simulated (S) cases are presented in the following 
chapters. The comparative results for the extracted features and 
the classification results of the state recognition by the LR 
classifiers are presented separately. 

 
Fig. 4: Example of the scaling of the reference cylinder pressure curve 
(100% power) using a modified Tukey window. The cycle starts at 0 
degrees and ends at 720 degrees. 
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A. Extracted features 

The comparative validation results of the extracted features, 
i.e., scaled means and relative percentual standard deviations of 
the feature values, are presented in Tables II, III, and IV. Before 
presenting the extracted feature values they were scaled so that 
the mean for each feature for the 100% power output equals one. 
Therefore, only the mean feature values for the 75% power 
output are presented. 

TABLE II.  MEANS OF THE PWR FEATURE VALUES AT 75% LOAD 

Co-

ordinate 

Measurement point 

P1 P2 P3 P4 

M S M S M S M S 

X 0.61 0.59 0.59 0.57 0.35 0.58 0.27 0.58 

Y 0.62 0.57 0.63 0.57 0.77 0.57 0.87 0.56 

Z 0.64 0.60 0.64 0.57 0.56 0.58 0.32 0.60 

TABLE III.  MEANS OF THE RF15 FEATURE VALUES AT 75% LOAD 

Co-

ordinate 

Measurement point 

P1 P2 P3 P4 

M S M S M S M S 

X 0.80 0.77 0.74 0.78 0.51 0.77 0.47 0.77 

Y 0.68 0.77 0.78 0.76 0.76 0.77 0.76 0.77 

Z 0.62 0.77 0.87 0.77 0.57 0.77 0.60 0.77 

TABLE IV.  RELATIVE STANDARD DEVIATIONS (%) OF THE FEATURES 

Signal 

length 

(cycle) 

Feature and power output level (%) 

PWR 75 PWR 100 RF15 75 RF15 100 

M S M S M S M S 

1 5.8 5.9 13.6 10.5 6.6 3.4 12.1 4.4 

2 4.8 5.8 6.2 10.4 5.2 2.3 6.2 3.0 

3 4.6 5.8 7.2 10.4 4.8 1.7 6.7 2.2 

4 4.5 5.8 5.5 10.4 4.6 1.6 5.3 2.0 

5 4.4 5.8 6.1 10.3 4.4 1.5 5.6 1.9 

6 4.4 5.8 5.3 10.3 4.3 1.4 5.0 1.8 

7 4.3 5.8 5.6 10.3 4.2 1.4 5.2 1.7 

B. State recognition 

The comparative validation results of the state recognition in 
the four validation locations for the different signal lengths are 
presented in Tables V, VI, and VII. Tables V and VI present the 
classification accuracies of the state recognition models trained 
using the PWR and RF15 features, respectively. In Table VII, 
the obtained results are produced by using both features. Table 
VIII presents the number of perfect classifiers individually for 
the seven different signal lengths and for the three different 
feature selections out of a possible 57. 

TABLE V.  ACCURACIES (%) OF CLASSIFIERS USING PWR FEATURE 

Signal 

length 

(cycle) 

Measurement point 

P1 P2 P3 P4 

M S M S M S M S 

1 91.4 82.0 78.8 99.0 93.5 92.3 68.7 90.0 

2 93.4 84.7 83.5 99.8 96.1 95.5 76.3 91.9 

3 94.0 86.5 85.4 99.9 96.8 97.2 79.4 92.7 

4 94.5 87.8 86.5 100 97.4 98.4 81.2 93.4 

5 94.7 88.7 87.1 100 97.7 99.0 82.2 94.2 

6 94.9 89.4 87.7 100 98.0 99.3 82.9 94.9 

7 95.1 89.9 88.1 100 98.1 99.5 83.5 95.8 

TABLE VI.  ACCURACIES (%) OF CLASSIFIERS USING RF15 FEATURE 

Signal 

length 

(cycle) 

Measurement point 

P1 P2 P3 P4 

M S M S M S M S 

1 88.1 99.2 91.1 100 75.9 81.6 95.3 100 

2 94.9 99.9 96.2 100 88.5 92.9 96.1 100 

3 91.3 100 94.5 100 82.2 97.7 91.7 100 

4 95.7 100 97.2 100 91.4 97.9 97.1 100 

5 93.3 100 95.8 100 86.3 98.3 94.8 100 

6 96.0 100 97.8 100 92.5 98.9 97.5 100 

7 94.6 100 96.4 100 88.9 98.8 96.3 100 

TABLE VII.  ACCURACIES (%) OF CLASSIFIERS USING BOTH FEATURES 

Signal 

length 

(cycle) 

Measurement point 

P1 P2 P3 P4 

M S M S M S M S 

1 95.1 99.2 92.2 100 95.1 81.6 87.8 100 

2 98.7 99.9 96.7 100 97.7 92.9 97.4 100 

3 97.8 100 95.5 100 97.7 97.7 93.6 100 

4 99.5 100 97.9 100 98.9 97.9 98.6 100 

5 98.8 100 96.6 100 98.5 98.3 96.3 100 

6 99.7 100 98.5 100 99.2 98.9 99.1 100 

7 99.2 100 97.3 100 98.9 98.8 97.7 100 

TABLE VIII.  NUMBER OF PERFECT CLASSIFIER MODELS 

Feature 
Signal length (cycle) 

1 2 3 4 5 6 7 

PWR 1 3 4 9 12 15 14 

RF15 5 32 42 48 49 50 52 

Both 5 32 42 48 49 50 52 
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IV. DISCUSSION 
When comparing the accuracies of the state recognition 

models it must be taken into consideration that the models built 
using the measured data classify between six classes (100%, 
95%, 90%, 75%, 50%, and 0%), whilst the models built using 
the simulated data classify between three classes (100%, 85%, 
and 75%). Most of the incorrect predictions by the models built 
using the measured data were made between the first three 
classes [6]. Therefore, it was expected that the accuracies of the 
models built using the measured data are somewhat lower than 
the models built using the simulated data. 

According to the results shown in the previous chapter there 
is enough variation in the simulated data so that only just over 
half of the trained operational state recognition models (614 of 
1197) are perfect classifiers. Analysis of the classification 
results by measurement point demonstrates that the most 
accurate classifiers were achieved using the simulated feature 
values extracted from the points P2 and P4. The result is contrary 
compared to the corresponding classifier accuracies achieved 
using the measured feature values where the most accurate 
models were achieved using feature values extracted from the 
data measured from points P1 and P3. There is no apparent 
reason to expect that corresponding comparative validation 
results obtained using other classifier algorithms, such as those 
in [6], would be significantly different. 

When comparing the simulated and measured feature values 
and the classifying accuracies of the state recognition models 
trained using them, the variation in the simulated feature values 
extracted using the PWR function is slightly higher than in the 
corresponding measured values. Considering the feature values 
extracted using the RF15 function the relation between the 
simulated and measured values is reverse and the differences 
between them are more notable. In fact, the variance in the 
simulated RF15 feature values is so low that using the values of 
both feature values for building the state recognition models 
instead of only the RF15 feature values does not increase the 
number of perfect classifiers. There is not as notable a difference 
between the feature values extracted from one and two cycles 
long segments of the simulated signals as there is between the 
feature values extracted from the corresponding measured signal 
segments. 

The comparison of the mean feature values extracted from 
the simulated and measured data shows that generally they 
correspond well with each other. However, there is very little 
difference between the magnitudes of the mean feature values 
extracted from the simulated data in the different directions (X, 
Y, and Z) for a specific point, whereas between the 
corresponding feature values extracted from the measured data 
the differences are significant, especially considering feature 
values related to points P3 and P4. 

V. CONCLUSIONS 
Reuse and integration of previously measured data was 

successfully implemented in introducing variations in the 
definition of the excitation forces used as the input for the 
simulations. As expected, adding variation to the excitation 
forces leads to varying simulated vibration responses. Thus, the 
simulated responses resemble the measured ones. Moreover, the 

accuracy of state recognition models based on the simulated data 
is very high overall but not perfect in all cases, which is also in 
accordance with the expectations. However, the comparative 
validation results reveal significant differences between the 
simulated and measured responses. The obtained results indicate 
that the variation in the frequency content of the simulated 
responses is notably different from the measured. Therefore, the 
frequency content of the excitation forces and of their sources, 
especially of the cylinder pressure curve should be studied. The 
variation of the cylinder pressure was significantly greater than 
the variation of the rotational speed, and thus the effect of the 
former to the generated excitation forces was undoubtedly more 
dominant. It should also be noted that physically the rotational 
speed and the cylinder pressure are strongly coupled even 
though in the excitation generation these quantities were treated 
as more separate. 

The measurement points used for the validation are located 
far from the excitation sources. The simulation method used 
does not consider the effect of possible nonlinearities, such as 
joints, that exist between the measurement point and excitation 
locations. Therefore, if available, mechanical vibration data 
measured from the engine, i.e., closer to the excitation sources, 
should be used in the validation as well. Additionally, the 
underlaying FE model could be revised. Thus, further 
investigation is needed regarding the simulation of the excitation 
forces, the simulation of responses, and the state recognition. 
Once the state recognition system is validated with the vibration 
data representing the normal operational state, the next obvious 
task is to compensate the lack of measured data of abnormal 
operation by simulations. Thus, the novelty detection approach 
will be investigated and implemented thoroughly. 
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