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Abstract—When walking on the road or navigating unfamiliar
areas, the elderly, visually handicapped, and persons with hearing
loss encounter challenges. The information on numerous safety
signs such as road signs, traffic signs, workplace safety signs or
industrial hazard signs is usually unhelpful to them. This paper
proposes a solution that can detect a comprehensive set of safety
signs in real-time. Our app runs a deep learning model pre-
trained on a custom-built dataset. The deep learning model we
have used is explicitly built for object detection to find regions
of interest, create appropriate bounding boxes, and classify the
signs with three different levels of severity - Danger, Caution, and
Prohibitory. The camera-equipped smartphone relays haptic or
audio feedback upon the successful detection of a safety sign.

Index Terms—assistive, computer vision, detection, mobile
application, safety sign dataset

I. INTRODUCTION

Nowadays, 90% of the population carries a smartphone with
more computation power than Apollo 11 that went to the
moon. This population includes the elderly, visually impaired,
and deaf. We can leverage this computing power to help the
elderly and differently-abled populous with the help of object
recognition. We can detect objects of interest or regions of
interest in a given image or video and generate a classification
output using object recognition.

We propose to use object detection to recognize safety signs
such as traffic signs, road signs, and workplace safety signs.
Depending on the severity of the signs (three custom levels),
we generate appropriate haptic or audio feedback. Our pre-
trained model runs on a smartphone with a suitable camera
to input video for detection. The app can help both deaf and
blind people with haptic feedback. Detection of danger signs
triggers audio feedback inspiring passers-by to come to a halt
and assist those in need.

We also observed a scope of improvement in the indoor
and industrial hazard safety sign recognition and detection
research.

II. LITERATURE REVIEW

People with visual impairments typically lack access to
visual cues such as informative signs, landmarks, and struc-
tural characteristics that people with normal vision rely on for
navigation [1]. The app iNavigate developed by the authors
combined a digital map of the environment with computer
vision and inertial sensing to estimate a user’s location in

real-time. This approach required a small number of train-
ing images data and improved sign detection leveraging the
YOLOv5 [2] pre-trained model. Two image datasets were used
in their experiments. The first dataset was acquired to evaluate
the effectiveness of the YOLOv5 object recognition algorithm
and the second one to assess the distance estimation algorithm.
Their approach allowed real-time detection of multiple indoor
sign types with distance and signs orientation to estimate a
user’s location.

Serna and Ruichek [3] used a real-world dataset from six
European countries for traffic sign classification. The dataset
had four categories - danger warning signs, regulatory signs,
informative signs, and others. Danger signs warn road users
about the nature of the potential danger ahead on the road. In
contrast, regulatory and informative signs inform commuters
about the restrictions and other appropriate information, re-
spectively. Lastly, the others categories enlighten road users
about any critical situation.

According to Hasegawa et al. [4], it is necessary to detect
traffic signs relatively far away from the point of view. Another
fact worth noting is that scale changes occur as an individual
approaches a sign, and the weather could also affect the
detection process. The authors also used YOLOv2, a high-
speed CNN as their model to further improve optimizations.
Their method divided the input into SxS regions to predict
the bounding box which consisted of five elements. They
also used different weights assigned to the coordinates and
the number of objects present in the frame. The model was
trained on varying sizes of traffic signs to be robust to scale
changes. They constructed their dataset in video and used
data augmentation to get better accuracy. In clear weather,
they achieved 94.6% precision, whereas at night they achieved
83.7% which was significantly higher than the methods used
in other papers.

Colour based traffic sign detection usually transform RGB
images into different colour spaces to extract the traffic
signs based on colour thresholding. Shape-based detection
considers various geometric contour shapes of traffic signs.
However, these methods take a great deal of computational
complexity and a suitable illuminated environment. Xianghua
et al. [5] proposed a different solution to solve this issue.
They used methods like adaptive thresholding with cumula-
tive distribution function of image histogram and maximum-
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minimum normalization method to process images according
to the threshold [5]. Using this method, they overexposed the
foreground, which tended to be the traffic sign and suppressed
the background. They also used morphological filtering in the
connected domain of the maximum-minimum normalization.
They achieved an accuracy of 93.96%.

Chakraborty and Chiracharit [6] focused on the use of
convolutional neural networks to detect washroom signs for
visually impaired people. The noticeable common signs in
washrooms and public places are generally in the shape of
a human being. The authors constructed their dataset using
a mobile phone camera. While pre-processing, they converted
RGB images to grayscale and then filtered out the noise. They
also used histogram equalization to equalize the intensity of
each pixel in the image. The authors used maximally stable
extreme region (MSER) algorithm for detecting regions of
interest, which also happens to be a blob detection method. For
classification purposes, they used a CNN trained on 2000 im-
ages [6]. The authors used a relatively simple seven-layer CNN
classifier to detect three different types of washroom signs.
Even after numerous optimizations, their method achieved
only 90% accuracy.

Although Kantawong [7] worked on the classification of
hazardous and fire exit signs, it presented interesting findings
in terms of pre-processing the dataset to increase machine
understanding. By using simple techniques like image bina-
rization, increasing the contrast, and thinning the edges, the
author was able to decrease the complexity of the task. The
photos were converted to a 52-digit binary number to process
them with a basic back-propagation neural network (BPN). It
avoided the need for a convolutional neural network (CNN)
and reduced the complexity. However, since our focus is object
recognition from complex images, the usage of a simple image
processing steps and BPN is undesirable. Furthermore, the
author used flat images of hazard and fire exit signs for
classification, which contrasts our usage of real-life traffic
signs, hazard signs and workplace safety signs.

Another study demonstrates the usage of an attention-
based model pre-trained on Imagenet [8]. This model detects
traffic signs by merging the Faster R-CNN with the attention
mechanism, which is a consideration for our future work.

A. Contributions

• We developed a model that recognizes a universal set of
safety signs such as those found in traffic, on the road,
in the workplace, and indoors. Our model determines the
severity level of a safety indicator regardless of the type
of sign supplied as input (danger, caution, or prohibitory).
As a result, helping the elderly, visually impaired people,
or people with hearing loss in their day-to-day navigation.

• We created a custom dataset (available upon request)
[9] and organized the annotations based on the baseline
semantics as our requirement (i.e., defining and segre-
gating on the level of severity), which included images
taken in various lighting situations, exposure settings, and
equipment, providing a feature rich dataset.

• We compared the mAP (mean Average Precision) of
various object detection models on both the PASCAL
VOC and our custom Safety Sign Dataset (Table II). We
have also compared our approach to previous safety sign
studies and our paper’s accommodation of a comprehen-
sive dataset (Table III).

• We developed a proof-of-concept Android app called
“Safety Sign Detection” and performed real-time tests
in various naturalistic scenarios, delivering priority-based
haptic feedback after detection (supplementary material
1).

III. METHODOLOGY

The usage of bounding box based object detection was more
suitable for our purposes than complex image segmentation
techniques to ensure faster training and processing times.
These bounding boxes are called image annotations, and in
our case, they consisted of two coordinates and the width
and height of the bounding box, producing a rectangle. We
used three different convolutional neural networks - SPP-net
[10], YOLOv3 [11], YOLOv5 [2] - that we had reviewed to
determine the one that performed the best and ultimately used
it in our application.

YOLOv5 [2] is based on continuous improvement of YOLO
to YOLOv4 and has got a benchmark accuracy in object
detection datasets. It uses CSPDarknet as the backbone by
incorporating cross-stage partial network (CSPNet) [12] into
Darknet.

As proposed in our objective, the final model should be
portable to be used standalone with a small application inter-
face. Taking this requirement into consideration, we compared
lightweight models like YOLOv5 [2], YOLOv3-tiny [11], and
SPP [10]. Ultimately, we deployed the YOLOv5 [2] model
trained with our dataset to the Android application due to its
performance, as will be presented in later sections.

For real-time object detection with video input, we used a
real video with various outdoor and indoor safety signs, and
our model detected the class of the safety sign. Once the sign is
detected, the application sends a haptic or vibration feedback
to the device that was running the application (Figure 1).

IV. EXPERIMENT SETUP

A. Dataset

We focused on building our own custom dataset. In our
review, we found no comprehensive dataset that consists of
various types of safety signs such as hazard signs, cautionary
signs, workplace safety signs, road signs and so on. We assim-
ilated images that described different categories of safety signs
and then divided them into suitable classes to give three types
of warnings. Our dataset is an amalgamation of workplace
safety, cautionary signs, traffic, and road signs datasets [13]–
[15] that are available publicly. Additionally, we performed
web-scraping to increase our sample size. Our dataset contains

1A video demonstrating our mobile application can be accessed at:
https://tinyurl.com/irisupplement
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Fig. 1: System architecture

312 images with 458 manual annotations (Table I) taken under
different conditions concerning the region of interest, such
as lightning, exposure, and distance to the object of interest.
Moreover, the cameras used for the scraped images is different
for each, thus, adding more variation in the feature set.

(a) Danger class image 1 (b) Danger class image 2

Fig. 2: Sample images from class ‘Danger’

Upon reviewing previous work done in this domain, we
divided our dataset into three categories as follows;

1) Danger: It is generally indicated with a solid red
background having a symbol and/or text in the middle
(examples shown in Figure 2). This was the easiest to
segregate due to a clear description.

2) Caution: It consists mostly of signs that have a solid
yellow or an orange background with a symbol and/or
text in the middle (examples shown in Figure 3). There
can also be situations that may include a black dashed
border on the sign itself.

3) Prohibition: It is usually denoted by a white background
accompanying red border with a symbol and/or text in
the middle (examples shown in Figure 4). The signs may
also consist of a stroke going through the center if the
shape of the sign is a circle.

The above classes gave us a good distribution while also
suitable labels for a real-time application. However, we real-
ized that traffic signs of different countries did not adopt this
methodology. In the end, we relied on the descriptions given
in the datasets to segregate our custom dataset into these three
classes. Another critical issue was that we needed annotations
or ground truths for the object detection, and these were made

available by only a few of the datasets we had selected. As a
result, we faced some challenges with annotations (discussed
in Section VII).

(a) Caution class image 1

(b) Caution class image 2

Fig. 3: Sample images from class ‘Caution’

(a) Prohibitory class image 1 (b) Prohibitory class image 2

Fig. 4: Sample images from class ‘Prohibitory’

B. Data Pre-processing

After collecting the dataset, we moved to label these images
as per the threat level – danger, caution, or prohibitory. For
this, we leveraged the makesense.ai platform [16]. It is an
open-source platform that does not require installation and
runs on a browser that supports JavaScript. We uploaded our
dataset and annotated the images with appropriate class labels.
Later, we downloaded two versions of the annotations - text
and CSV files. Text annotations facilitated the training of
YOLO based models, and a CSV file facilitated the training
of the SPP model.

As mentioned earlier, our dataset was an amalgamation of
multiple datasets, and this posed unique challenges in terms
of inconsistency in image dimensionality. After annotating the
images, we faced the daunting task of resizing the images to a
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uniform size without negatively impacting the image annota-
tion. So, we took the assistance of the Roboflow platform [17].
Roboflow is a developer framework for Computer Vision that
enables improved data collection, pre-processing, and model
training approaches. The platform also supports pre-processing
data workflows like changing image orientations and resizing
and contrasting. However, we used Roboflow to resize the
images to 640 by 640 pixels without any repercussions on
the annotations. Later, we split the dataset into 75%-25% for
training and validation purposes on Roboflow itself.

C. Model Training

After organizing the labelled dataset into a train-validate
split, we initiated the model training process. The SPP,
YOLOv3, and YOLOv5 models were used due to their accu-
racy and performance of object detection in many applications.
After training, we compared the confusion matrix of the three
models and found YOLOv5 to be the best performer. We saved
the weights of the custom trained YOLOv5 model to be used
later for object detection. We performed a preliminary testing
of the object detection using a webcam.

Since the project aimed to provide haptic feedback upon
threat detection, we decided to build an Android application,
and leverage the native camera and vibration features to
achieve this. Before building a native Android application, we
had to find a way to utilize the trained weights in the Android
platform. Pytorch allows to seamlessly go from training a
model and deploying it while staying within the Pytorch
Ecosystem [18]. It provides us with a Pytorch Mobile version
with an efficient mobile interpreter for Android and IOS
platforms. We trained our model on Google Colab to utilize its
GPU runtime environment for our application. We expected a
few hiccups while running on a low powered computationally
limited edge device compared to its desktop counterpart.
Hence, an essential step was to convert the Python-dependent
model to TorchScript. Pytorch provides us with a utility called
optimize for mobile that optimizes the model for mobile use.
TorchScript version 1.9.0, based on the same version on
Pytorch, was used in our Android application [19].

D. Application Development

We built an Android app, “Safety Sign Detection” (sup-
plementary material2), to demonstrate the objection detection
capability. The optimized model was packaged inside the
application and it was loaded using a LiteModuleLoader [20]
[21]. The application sent the live camera frame at every 250
ms. This gap was reasonable to detect the objects, achieve a
quick feedback post detection, and avoid performance bottle-
neck issues. Our app labelled detected signs with bounding
box and confidence score.

We discovered that a confidence score of 50 was a suitable
threshold during our testing. In a possible scenario where the
model detects objects of two or more classes with greater than
50 % confidence, a feedback was given for the most severe

2A video demonstrating our mobile application can be accessed at:
https://tinyurl.com/irisupplement

(a) Prohibitory (b) Caution (c) Danger and Pro-
hibitory

Fig. 5: Screenshots showing a live output of our Safety Sign
Detection android application giving feedback for the various
signs identified by the model.

sign while showing the bounding boxes for all the detected
classes. The application generates a distinct vibration pattern
based on the the level of severity of a sign. If a danger signal is
detected in the feed, the device will produce a short vibration
(200 ms), a pause (400 ms), and then a long vibration (1000
ms). It will generate two brief vibrations (200 ms each) with a
400 ms delay in between for caution signs and a single 500 ms
vibration in the case of prohibitory signs. When the signs are
detected again in the next frame, the vibrations will reoccur
after a 400 ms delay between each feedback. There is a speech
feedback of “danger detected” every time it detects a danger
sign. Speech feedback plays at the interval of 5000 ms if the
model detects a danger sign for two consecutive frames.

App maintains a low confidence score for object detection to
avoid false positives. This prevents missing a safety sign when
it is present and keeps a person from entering potentially lethal
situations.

Fig. 6: Confusion matrix of YOLOv5 model trained our dataset
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TABLE I: Performance of the YOLOv5s model on our custom dataset.

Class Annotated Labels Precision Recall mAP@.5 mAP@.5:.95
All 458 0.966 0.915 0.948 0.765
Caution 190 0.964 0.947 0.967 0.785
Danger 102 0.979 0.912 0.946 0.767
Prohibitory 166 0.954 0.886 0.931 0.744

TABLE II: Comparison matrix of mAP (mean average precision) for PASCAL VOC dataset with our Safety Sign dataset.

Model Dataset mAP@.5 mAP@.5:.95
YOLOv1 [22] - 0.634
Fast - RCNN + YOLO [22] - 0.707
SPP [10] PSACAL VOC [23] - 0.592
Fast RCNN [24] - 0.7
YOLOv3 [11] - 0.836
YOLOv5 [ours] 0.948 0.765
YOLOv3 [ours] Safety Sign Dataset [9] 0.908 0.646
SPP [ours] 0.911 0.662

TABLE III: Comparison matrix our comprehensive approach with respect to previous research on safety sign detection.

Paper Dataset type Approach/Model Accuracy Testing Environment
Real-time sign detection for indoor navigation [1] Indoor Safety sign YOLOv5 0.98 Phone app iNavigate
Japanese traffic sign detection [4] Traffic Sign YOLOv2 0.95 Generic
Smart data-driven traffic sign detection [5] Traffic Sign Shape-based detection 0.94 Generic
Washroom sign detection [6] Indoor Safety sign Seven-layered CNN classifier 0.9 Generic
Hazardous signs and fire exit signs classification [7] Workplace safety signs Binary encoded images with BPN NA Generic
Traffic sign detection [8] Traffic sign Attention-based NN 0.92 Generic
Safety Sign detection (Our) Comprehensive* YOLOv5 0.95 Android app**

*This dataset includes traffic, indoor and workplace safety signs.
**Gives haptic feedback based on the level of safety.

V. RESULTS

We collected all parametric results after training the
YOLOv5 model with our dataset freezing the backbone with
pre-trained weights.

During training, we observed that the loss reached zero
and there was no significant improvement after 90 epochs.
We terminated the training process at 100 epochs to avoid
over-fitting. Table I shows the results of the experiment run
mentioned above with 100 epochs for the validation set after
training.

We observed that the model was trained well with mAP
(mean average precision) at IOU (Intersection over Union)
0.5; the graph started flattening after 40 epochs. However, to
ensure model optimization at IOU 0.5:0.95, we continued the
training up to 100 epochs; the mAP graph started to flatten
after 70 epochs in this case.

From Table I, we can infer that there are 458 labels (190
caution, 102 danger, and 166 prohibitory) for 312 images. The
mAP at 0.5 IOU was almost in level for all classes, indicating
that the model was trained uniformly at IOU 0.5. However,
at IOU 0.5:0.95, the prediction of class prohibitory suffered a
little.

Figure 6 illustrates the confusion matrix for the YOLOv5
model. We also discovered that the prohibitory class had a
lower accuracy of 0.89 than the other two classes, possibly
because of the lack of labels. We also discovered several false
positives for the background, which inhibited model training
and impacted the overall prediction of all classes.

VI. DISCUSSION

Table II presents the comparative results for the experiments
carried out in this paper with our custom safety sign dataset
and those achieved in previous works using the PASCAL VOC
dataset [23].

The baseline mAP of the initial YOLO model for object
detection in the PASCAL VOC dataset was 0.634. The paper
[22] also combined Fast-RCNN with the YOLO layer and
obtained an improvement in mAP (0.707), which is close to
the mAP Fast-RCNN paper [24]. As we stated in our previous
Section III, SPPnet did an excellent job of lowering the
model’s complexity as no fine-tuning was necessary. However,
the model’s standalone performance with mAP 0.592 fell short
of expectations.

YOLOv3, as shown in Table II, improved the mAP score of
object detection PASCAL POC dataset to a significant level,
with Darknet [11] backbone. We chose the YOLOv5 model to
train our dataset because it is enhanced and built on YOLOv3’s
Darknet and SPP, making it a lightweight yet optimized model
to provide better performance.

After comparing the performance of the above object detec-
tion models, we decided to train our dataset with YOLOv5,
YOLOv3 and SPP models. As we mentioned in Section IV,
our dataset was relatively small and these three models were
the best fitted for a dataset like ours. Table II also depicts the
mAP scores of these models trained on our dataset. We found
that YOLOv5 outperforms SPP and YOLOv3, leading with
the highest mAP score of 0.765 at IOU 0.5:0.95. Therefore,
we deployed the trained weights of the YOLOv5 model in our
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Android application for real-time object detection.

VII. CHALLENGES AND LIMITATIONS

As our study entails the construction of a new dataset, we
came across a few issues with the logistics of data collection,
processing, and implementation as described follows.

• After extensive research, we found only one publicly
accessible dataset [15] of hazard signs. Our novel attempt
to create a universal safety sign dataset was challenging
as the nature, notation, and format of these signs differ
among countries. We will be expanding our dataset with
more such samples in the near future. We will also
attempt to include more challenging scenarios for feature
extraction, like low-light photographs, partially obscured
signs and warped or distorted signs.

• We attempted to accommodate various significant and
universal signs seen throughout most countries, although
segregation was a time-consuming task. However, the
semantics of safety signs for generalization need improve-
ment.

VIII. CONCLUSION

This research aims to help and assist the elderly, visually
impaired people, and people with hearing loss with their daily
commute, travel, or work routine. We presented a proof-of-
concept of our idea with a smartphone application.

We successfully created our dataset consisting of traffic and
hazardous signs from various sources. We manually scanned
each image for safety signs and assigned an appropriate
threat label - danger, caution, or prohibitory. We trained and
compared three models - YOLO v5, YOLO v3, and SPP.
From the comparison, we found that the YOLOv5 object
detection model was superior in detection speed and accuracy.
We developed an Android app, “Safety Sign Detection”, to
test our model in real-life scenarios. The model deployed
on the application classified the object it read from the
video feed into predetermined threat categories. Additionally,
these classification labels or the severity of the threat were
communicated to the user through haptic and speech feedback
using the same device. The application also handled feedback
from multiple-class detection by prioritizing the most severe
safety sign.

In the future, our goal is to expand our dataset with
construction, industrial, and other types of safety signs, and to
improve the semantics of safety signs for generalization. Cre-
ating sub-classes at each threat level for precise identification
could also enhance the application.
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