
軟體架構：
架構設計、系統分解、分散式架構

(Software Architecture: Architectural design, System decomposition,
and Distribution architecture)

1

Min-Yuh Day
戴敏育

Associate Professor
副教授

Institute of Information Management, National Taipei University
國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday
2020-10-13

軟體工程
(Software Engineering)

1091SE05
MBA, IM, NTPU (M5118) (Fall 2020)

Tue 2, 3, 4 (9:10-12:00) (B8F40)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
1 2020/09/15 軟體工程概論 (Introduction to Software Engineering)

2 2020/09/22 軟體產品與專案管理：軟體產品管理，原型設計
(Software Products and Project Management:

Software product management and prototyping)
3 2020/09/29 敏捷軟體工程：敏捷方法、Scrum、極限程式設計

(Agile Software Engineering: Agile methods, Scrum,
and Extreme Programming)

4 2020/10/06 功能、場景和故事 (Features, Scenarios, and Stories)
5 2020/10/13 軟體架構：架構設計、系統分解、分散式架構

(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

6 2020/10/20 軟體工程個案研究 I
(Case Study on Software Engineering I)

2

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
7 2020/10/27 基於雲的軟體：虛擬化和容器、軟體即服務

(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2020/11/03 雲端運算與雲軟體架構
(Cloud Computing and Cloud Software Architecture)

9 2020/11/10 期中報告 (Midterm Project Report)
10 2020/11/17 微服務架構：RESTful服務、服務部署

(Microservices Architecture, RESTful services,
Service deployment)

11 2020/11/24 軟體工程產業實務
(Industry Practices of Software Engineering)

12 2020/12/01 安全和隱私 (Security and Privacy)

3

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
13 2020/12/08 軟體工程個案研究 II

(Case Study on Software Engineering II)
14 2020/12/15 可靠的程式設計 (Reliable Programming)
15 2020/12/22 測試：功能測試、測試自動化、

測試驅動的開發、程式碼審查
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

16 2020/12/29 DevOps和程式碼管理：
程式碼管理和DevOps自動化
(DevOps and Code Management:
Code management and DevOps automation)

17 2021/01/05 期末報告 I (Final Project Report I)
18 2021/01/12 期末報告 II (Final Project Report I)

4

課程大綱 (Syllabus)

Software Engineering and
Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

8

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

9

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

15

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Software
Architecture:
Architectural design,

System decomposition,
and

Distribution architecture
16

Software architecture

• To create a reliable, secure and efficient product,
you need to pay attention to architectural design
which includes:
– its overall organization,
– how the software is decomposed into components,
– the server organization
– the technologies that you use to build the software.

The architecture of a software product affects its
performance, usability, security, reliability and
maintainability.

17Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software architecture

• There are many different interpretations of the
term ‘software architecture’.
– Some focus on ‘architecture’ as a noun

- the structure of a system
and others consider ‘architecture’ to be a verb
- the process of defining these structures.

18Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The IEEE definition of
software architecture

• Architecture is the
fundamental organization of a software system
embodied in its components, their
relationships to each other and
to the environment, and
the principles guiding its design and evolution.

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software architecture and
components

• A component is an element that implements a coherent
set of functionality or features.

• Software component can be considered as a collection
of one or more services that may be used by other
components.

• When designing software architecture, you don’t have
to decide how an architectural element or component is
to be implemented.

• Rather, you design the component interface and leave
the implementation of that interface to a later stage of
the development process.

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access to services provided by
software components

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

API

S1 S2 S3 S4 S5 S6

Component 1 Component 2

Services accessed directly
by other components

Services accessed through
the component API

Why is architecture important?

• Architecture is important because the architecture of
a system has a fundamental influence on the non-
functional system properties.

• Architectural design involves understanding the
issues that affect the architecture of your product
and creating an architectural description that shows
the critical components and their relationships.

• Minimizing complexity should be an important goal
for architectural designers.

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Non-functional system quality
attributes

• Responsiveness
Does the system return results to users in a reasonable time?

• Reliability
Do the system features behave as expected by both
developers and users?

• Availability
Can the system deliver its services when requested by users?

• Security
Does the system protect itself and users’ data from
unauthorized attacks and intrusions?

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Non-functional system quality
attributes

• Usability
Can system users access the features that they need and
use them quickly and without errors?

• Maintainability
Can the system be readily updated and new features
added without undue costs?

• Resilience
Can the system continue to deliver user services in the
event of partial failure or external attack?

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Centralized security architectures

• The benefits of a centralized security architecture are
that it is easier to design and build protection and
that the protected information can be accessed more
efficiently.

• However, if your security is breached, you lose
everything.

• If you distribute information, it takes longer to access
all of the information and costs more to protect it.

• If security is breached in one location, you only lose
the information that you have stored there.

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Shared database architecture

26

C2C1

Shared database

User interface

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Multiple database architecture

27

C2C1

C1 database

User interface

C2 database

C3
Database reconciliation

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Maintainability and performance
• Shared database architecture:
– system with two components (C1 and C2) that share a common

database.
• Multiple database architecture:
– each component has its own copy of the parts of the database

that it needs.
– If one component needs to change the database organization,

this does not affect the other component.
• A multi-database architecture may run more slowly and may cost

more to implement and change.
– A multi-database architecture needs a mechanism

(component C3) to ensure that the data shared by C1 and C2 is
kept consistent when it is changed.

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Issues that influence
architectural decisions

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Architectural
influences

Product
lifetime

Software
reuse

Software
compatibility

Nonfunctional
product

characteristics

Number of
users

The importance of
architectural design issues

• Nonfunctional product characteristics
Nonfunctional product characteristics such as security and performance
affect all users. If you get these wrong, your product will is unlikely to be
a commercial success. Unfortunately, some characteristics are opposing,
so you can only optimize the most important.

• Product lifetime
If you anticipate a long product lifetime, you will need to create regular
product revisions. You therefore need an architecture that is evolvable,
so that it can be adapted to accommodate new features and technology.

• Software reuse
You can save a lot of time and effort, if you can reuse large components
from other products or open-source software. However, this constrains
your architectural choices because you must fit your design around the
software that is being reused.

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The importance of
architectural design issues

• Number of users
If you are developing consumer software delivered over
the Internet, the number of users can change very quickly.
This can lead to serious performance degradation unless
you design your architecture so that your system can be
quickly scaled up and down.

• Software compatibility
For some products, it is important to maintain
compatibility with other software so that users can adopt
your product and use data prepared using a different
system. This may limit architectural choices, such as the
database software that you can use.

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Trade off:
Maintainability vs performance

• System maintainability is an attribute that reflects how
difficult and expensive it is to make changes to a system after
it has been released to customers.
– You improve maintainability by building a system from

small self-contained parts, each of which can be replaced
or enhanced if changes are required.

• In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does
one thing and one thing only.
– However, it takes time for components to communicate

with each other. Consequently, if many components are
involved in implementing a product feature, the software
will be slower.

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Trade off:
Security vs usability

• You can achieve security by designing the system
protection as a series of layers.

• An attacker has to penetrate all of those layers before
the system is compromised.

• Layers might include system authentication layers, a
separate critical feature authentication layer, an
encryption layer and so on.

• Architecturally, you can implement each of these layers
as separate components so that if one of these
components is compromised by an attacker, then the
other layers remain intact.

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication layers

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

IP authentication

Application authentication

Feature authentication

Encryption

Protect asset such as a
database of user’s credit card

Usability issues
• A layered approach to security affects the usability of

the software.
– Users have to remember information, like passwords, that is

needed to penetrate a security layer. Their interaction with
the system is inevitably slowed down by its security features.

– Many users find this irritating and often look for work-arounds
so that they do not have to re-authenticate to access system
features or data.

• To avoid this, you need an architecture:
– that doesn’t have too many security layers
– that doesn’t enforce unnecessary security
– that provides helper components that reduce the load on

users
35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

An architectural model of a
document retrieval system

36

DB1 DB2 DB3 DB4 DB5

Database
Query

Query
validation

Logging User account
management

Index
management

Index
querying

Index
creation

Search Document
retrieval

Rights
management Payments Accounting

Authentication and
authorization

Form and query
manager

Web page
generation

User interaction
Local input
validation Local printingWeb browser

User interface
management

Information
retrieval

Document index

Basic services

Databases

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of
component relationships

37

C2
C1

C2C1

C1

C1 is part of C2 C1 uses C2

calls

C2

C2C1 Data

C1 is-located-with C2 C1 shared-data-with C2

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Architectural design guidelines

38

Design
guidelines

Separation of concerns
Organize your architecture

into components that
focus on a single concern

Stable interfaces
Design component interfaces

that are coherent and
that changes slowly

Implement once
Avoid duplicating

functionality at different
places in your architecture

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-cutting concerns

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security

User interface

Performance Reliability

Application

Infrastructure

Operating System

Hardware

A generic layered architecture for
a web-based application

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Browser-based or mobile user interface

Authentication and user interaction management

Application-specific functionality

Basic shared services

Transaction and database management

A layered architectural model of
the iLearn system

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication Logging and monitoring Application interfacing

Resource
discovery

User
analytics

Virtual Learning
environment

Group
configuration

Application
configuration

Interface
creation

Forms
management Login

Web browser iLearn appUser interface

User interface
management

Configuration
services

Application
services

Integrated
services

Shared infrastructure
services

Interface
delivery

Security
configuration

User interface
configuration

Setup
service

Archive access Word processor Video conf. Email and
messaging

User installed
application Blog Wiki Spreadsheet Presentation Drawing

Authentication
and authorization

User storage Application storage Search

Distribution architecture
• The distribution architecture of a software system

defines the servers in the system and the allocation of
components to these servers.

• Client-server architectures are a type of distribution
architecture that is suited to applications where clients
access a shared database and business logic operations
on that data.

• In this architecture, the user interface is implemented
on the user’s own computer or mobile device.
– Functionality is distributed between the client and

one or more server computers.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client-server architecture

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Servers

Load
balancerresponse

response

response

response

request

request

request

request

The Model-View-Controller (MVC)
pattern

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Model

ViewController

Browser
CLIENT

SERVER

User inputs
User

changes

Page to display

Change
notification

View update
request

View refresh
request

Mobile Web App

45

HTML

JavaScriptCSS

Phone
Data

External
Data

Templates

Mobile frameworks
and

Libraries

Source: Scott Preston, Learn HTML5 and JavaScript for iOS: Web Standards-based Apps for iPhone, iPad, and iPod touch, Apress, 2012

MVC Framework of Mobile Apps
(HTML5, CSS3, JavaScript)

46Source: http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

Multi-tier client-server architecture

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

• Services in a service-oriented architecture are
stateless components, which means that they
can be replicated and can migrate from one
computer to another.

• Many servers may be involved in providing
services

• A service-oriented architecture is usually easier
to scale as demand increases and is resilient to
failure.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service-oriented Architecture

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

Issues in architectural choice
• Data type and data updates

– If you are mostly using structured data that may be updated by different
system features, it is usually best to have a single shared database that
provides locking and transaction management. If data is distributed
across services, you need a way to keep it consistent and this adds
overhead to your system.

• Change frequency
– If you anticipate that system components will be regularly changed or

replaced, then isolating these components as separate services simplifies
those changes.

• The system execution platform
– If you plan to run your system on the cloud with users accessing it over

the Internet, it is usually best to implement it as a service-oriented
architecture because scaling the system is simpler.

– If your product is a business system that runs on local servers, a multi-tier
architecture may be more appropriate.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technology choices
• Database

Should you use a relational SQL database or an unstructured NOSQL
database?

• Platform
Should you deliver your product on a mobile app and/or a web platform?

• Server
Should you use dedicated in-house servers or design your system to run
on a public cloud? If a public cloud, should you use Amazon, Google,
Microsoft, or some other option?

• Open source
Are there suitable open-source components that you could incorporate
into your products?

• Development tools
Do your development tools embed architectural assumptions about the
software being developed that limit your architectural choices

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Software architecture is the fundamental

organization of a system embodied in its
components, their relationships to each other, and to
the environment, and the principles guiding its
design and evolution.

• The architecture of a software system has a
significant influence on non-functional system
properties such as reliability, efficiency and security.

• Architectural design involves understanding the
issues that are critical for your product and creating
system descriptions that shows components and
their relationships.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• The principal role of architectural descriptions is to

provide a basis for the development team to discuss
the system organization. Informal architectural
diagrams are effective in architectural description
because they are fast and easy to draw and share.

• System decomposition involves analyzing
architectural components and representing them as
a set of finer-grain components.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• To minimize complexity, you should separate

concerns, avoid functional duplication and focus on
component interfaces.

• Web-based systems often have a common layered
structure including user interface layers, application-
specific layers and a database layer.

• The distribution architecture in a system defines the
organization of the servers in that system and the
allocation of components to these servers.

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Multi-tier client-server and

service-oriented architectures are the most
commonly used architectures for web-based
systems.

• Making decisions on technologies such as database
and cloud technologies are an important part of the
architectural design process.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.
• Ian Sommerville (2015), Software Engineering, 10th Edition,

Pearson.
• Titus Winters, Tom Manshreck, and Hyrum Wright (2020),

Software Engineering at Google: Lessons Learned from
Programming Over Time, O'Reilly Media.

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth
Edition, Project Management Institute

• Project Management Institute (2017), Agile Practice Guide,
Project Management Institute

56

