
1

Min-Yuh Day
戴敏育

Associate Professor
副教授

Institute of Information Management, National Taipei University
國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday
2021/12/02

軟體工程
(Software Engineering)

1101SE09
MBA, IM, NTPU (M6131) (Fall 2021)
Thu 11, 12, 13 (19:25-22:10) (209)

安全和隱私 (Security and Privacy)

可靠的程式設計 (Reliable Programming)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
1 2021/09/23 軟體工程概論 (Introduction to Software Engineering)

2 2021/09/30 軟體產品與專案管理：軟體產品管理，原型設計
(Software Products and Project Management:

Software product management and prototyping)
3 2021/10/07 敏捷軟體工程：敏捷方法、Scrum、極限程式設計

(Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming)

4 2021/10/14 功能、場景和故事 (Features, Scenarios, and Stories)

5 2021/10/21 軟體工程個案研究 I (Case Study on Software Engineering I)

6 2021/10/28 軟體架構：架構設計、系統分解、分散式架構
(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

2

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
7 2021/11/04 基於雲的軟體：虛擬化和容器、軟體即服務

(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2021/11/11 期中報告 (Midterm Project Report)
9 2021/11/18 雲端運算與雲軟體架構

(Cloud Computing and Cloud Software Architecture)
10 2021/11/25 微服務架構：RESTful服務、服務部署

(Microservices Architecture, RESTful services,
Service deployment)

11 2021/12/02 安全和隱私 (Security and Privacy);
可靠的程式設計 (Reliable Programming)

12 2021/12/09 軟體工程個案研究 II
(Case Study on Software Engineering II)

3

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
13 2021/12/16 軟體工程產業實務

(Industry Practices of Software Engineering)
14 2021/12/23 測試：功能測試、測試自動化、

測試驅動的開發、程式碼審查
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews);

DevOps和程式碼管理：程式碼管理和DevOps自動化
(DevOps and Code Management:
Code management and DevOps automation)

15 2021/12/30 期末報告 I (Final Project Report I)
16 2022/01/06 期末報告 II (Final Project Report II)
17 2022/01/13 學生自主學習 (Self-learning)
18 2022/01/20 學生自主學習 (Self-learning)

4

課程大綱 (Syllabus)

Software Engineering
and

Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Project-based software engineering

6

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

9Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

11

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

12

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

15Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

18

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Security
and

Privacy

32

Outline
• Security
• Privacy

33

• Software security should always be a high priority for
product developers and their users.

• If you don’t prioritize security, you and your customers
will inevitably suffer losses from malicious attacks.

• In the worst case, these attacks could can put product
providers out of business.
– If their product is unavailable or if customer data is

compromised, customers are liable to cancel their
subscriptions.

• Even if they can recover from the attacks, this will take
time and effort that would have been better spent
working on their software.

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software security

35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System infrastructure stack

Software Infrastructure

Operational Environment

Application

Frameworks and application libraries

Browsers and messaging

System libraries

Database

Operating system

Network

• Authentication and authorization
You should have authentication and authorization standards and
procedures that ensure that all users have strong authentication and that
they have properly access permissions properly.

• System infrastructure management
Infrastructure software should be properly configured and security
updates that patch vulnerabilities should be applied as soon as they
become available.

• Attack monitoring
The system should be regularly checked for possible unauthorized access.
If attacks are detected, it may be possible to put resistance strategies in
place that minimize the effects of the attack.

• Backup
Backup policies should be implemented to ensure that you keep
undamaged copies of program and data files. These can then be restored
after an attack.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security management

• Operational security focuses on helping users to maintain
security. User attacks try to trick users into disclosing their
credentials or accessing a website that includes malware such
as a key-logging system.

• Operational security procedures and practices
– Auto-logout, which addresses the common problem of

users forgetting to logout from a computer used in a
shared space.

– User command logging, which makes it possible to
discover actions taken by users that have deliberately or
accidentally damaged some system resources.

– Multi-factor authentication, which reduces the chances of
an intruder gaining access to the system using stolen
credentials.

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Operational security

• Injection attacks are a type of attack where a
malicious user uses a valid input field to input
malicious code or database commands.

• These malicious instructions are then executed,
causing some damage to the system. Code can be
injected that leaks system data to the attackers.

• Common types of injection attack include buffer
overflow attacks and SQL poisoning attacks.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Injection attacks

• SQL poisoning attacks are attacks on software
products that use an SQL database.

• They take advantage of a situation where a user
input is used as part of an SQL command.

• A malicious user uses a form input field to input a
fragment of SQL that allows access to the database.

• The form field is added to the SQL query, which is
executed and returns the information to the attacker.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

SQL poisoning attacks

• Cross-site scripting attacks are another form of injection
attack.

• An attacker adds malicious Javascript code to the web page
that is returned from a server to a client and this script is
executed when the page is displayed in the user’s browser.

• The malicious script may steal customer information or direct
them to another website.

• This may try to capture personal data or display
advertisements.

• Cookies may be stolen, which makes a session hijacking attack
possible.

• As with other types of injection attack, cross-site scripting
attacks may be avoided by input validation.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-site scripting attacks

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-site scripting attack

Browser

Product website1.
Introduce

malicious code

Victim

Website

Browser
2.

Data delivered and malware script
installed in victim’s browser

3.
Malware script sends

session cookie to
attacker

Attacker Malicious code
added to valid

data

Valid request for
data from website

• When a user authenticates themselves with a web
application, a session is created.
– A session is a time period during which the user’s

authentication is valid. They don’t have to re-
authenticate for each interaction with the system.

– The authentication process involves placing a
session cookie on the user’s device

• Session hijacking is a type of attack where an
attacker gets hold of a session cookie and uses this to
impersonate a legitimate user.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Session hijacking attacks

• There are several ways that an attacker can find out
the session cookie value including cross-site scripting
attacks and traffic monitoring.
– In a cross-site scripting attack, the installed

malware sends session cookies to the attackers.
– Traffic monitoring involves attackers capturing the

traffic between the client and server. The session
cookie can then be identified by analyzing the
data exchanged.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Session hijacking attacks

• Traffic encryption
Always encrypt the network traffic between clients and your server.
This means setting up sessions using https rather than http. If traffic
is encrypted it is harder to monitor to find session cookies.

• Multi-factor authentication
Always use multi-factor authentication and require confirmation of
new actions that may be damaging. For example, before a new
payee request is accepted, you could ask the user to confirm their
identity by inputting a code sent to their phone.

• Short timeouts
Use relatively short timeouts on sessions. If there has been no
activity in a session for a few minutes, the session should be ended
and future requests directed to an authentication page.

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Actions to reduce the
likelihood of hacking

• Authentication is the process of ensuring that
a user of your system is who they claim to be.

• You need authentication in all software
products that maintain user information, so
that only the providers of that information can
access and change it.

• You also use authentication to learn about
your users so that you can personalize their
experience of using your product.

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication approaches

Knowledge

Possession

Attribute

Password

Mobile
device

FingerprintAuthenticating
user

Authentication
approach Example

• Insecure passwords
Users choose passwords that are easy to remember.

• Phishing attacks
Users click on an email link that points to a fake site
that tries to collect their login and password details.

• Password reuse
Users use the same password for several sites.

• Forgotten passwords
Users regularly forget their passwords so that you
need to set up a password recovery mechanism to
allow these to be reset.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Weaknesses of
password-based authentication

• Federated identity is an approach to authentication where
you use an external authentication service.

• ‘Login with Google’ and ‘Login with Facebook’ are widely
used examples of authentication using federated identity.

• The advantage of federated identity for a user is that they
have a single set of credentials that are stored by a trusted
identity service.

• Instead of logging into a service directly, a user provides
their credentials to a known service who confirms their
identity to the authenticating service.

• They don’t have to keep track of different user ids and
passwords.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Federated identity

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Federated identity

Request
authentication

User Service Trusted
authenticator

Deliver Request

Request credentials

Provide credentials

Return authentication
token

Authentication
response

• Authentication involves a user proving their identity to a
software system.

• Authorization is a complementary process in which that identity
is used to control access to software system resources.
– For example, if you use a shared folder on Dropbox, the

folder’s owner may authorize you to read the contents of
that folder, but not to add new files or overwrite files in the
folder.

• When a business wants to define the type of access that users
get to resources, this is based on an access control policy.
– This policy is a set of rules that define what information

(data and programs) is controlled, who has access to that
information and the type of access that is allowed

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authorization

• Explicit access control policies are important for both legal
and technical reasons.

• Data protection rules limit the access the personal data and
this must be reflected in the defined access control policy.
– If this policy is incomplete or does not conform to the

data protection rules, then there may be subsequent
legal action in the event of a data breach.

• Technically, an access control policy can be a starting point
for setting up the access control scheme for a system.

• For example, if the access control policy defines the access
rights of students, then when new students are registered,
they all get these rights by default.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access control policies

• Access control lists (ACLs) are used in most file and
database systems to implement access control policies.

• Access control lists are tables that link users with
resources and specify what those users are permitted
to do.

• If access control lists are based on individual
permissions, then these can become very large.
However, you can dramatically cut their size by
allocating users to groups and then assigning
permissions to the group

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access Control Lists (ACL)

• Encryption is the process of making a document unreadable
by applying an algorithmic transformation to it.

• A secret key is used by the encryption algorithm as the basis
of this transformation. You can decode the encrypted text by
applying the reverse transformation.

• Modern encryption techniques are such that you can encrypt
data so that it is practically uncrackable using currently
available technology.

• History has demonstrated that apparently strong encryption
may be crackable when new technology becomes available.

• If commercial quantum systems become available, we will
have to use a completely different approach to encryption on
the Internet.

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption and decryption

EncryptPlain
text

Encrypted
text

Plain
textDecrypt

Secret
key

Secret
key

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Symmetric encryption

Encrypt

Secret
message

Decrypt

Encryption key

Encrypted
text

Secret
message

a7Dr6yYf9F…

Encryption key

a7Dr6yYf9F…

Alice Bob

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Asymmetric encryption

Encrypt

Secret
message

Decrypt

Bob’s public key

Encrypted
text

Secret
message

dr5ts3TR9dt
x4ztmRsYY…

Bob’s private key
hTr34BbfsDy
9r3g5HHt76…

Alice Bob

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption for authentication

Encrypt

I am really
Bob

Decrypt

Encrypted
text

I am really
Bob

Bob

Bob’s private key
hTr34BbfsDy
9r3g5HHt76…

Bob’s public key
dr5ts3TR9dt
x4ztmRsYY…

Alice

• The https protocol is a standard protocol for securely
exchanging texts on the web.

• It is the standard http protocol plus an encryption
layer called TLS (Transport Layer Security).

• This encryption layer is used for 2 things:
– to verify the identity of the web server;
– to encrypt communications so that they cannot be

read by an attacker who intercepts the messages
between the client and the server

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TLS and digital certificates

• TLS encryption depends on a digital certificate that is
sent from the web server to the client.
– Digital certificates are issued by a

certificate authority (CA), which is a trusted
identity verification service.

– The CA encrypts the information in the certificate
using their private key to create a unique
signature. This signature is included in the
certificate along with the public key of the CA. To
check that the certificate is valid, you can decrypt
the signature using the CA’s public key.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TLS and digital certificates

• Key management is the process of ensuring that
encryption keys are securely generated, stored and
accessed by authorized users.

• Businesses may have to manage tens of thousands of
encryption keys so it is impractical to do key
management manually and you need to use some
kind of automated key management system (KMS).

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Key management

• Subject information
Information about the company or individual whose
web site is being visited. Applicants apply for a digital
certificate from a certificate authority who checks
that the applicant is a valid organization.

• Certificate authority information
Information about the certificate authority (CA) who
has issued the certificate.

• Certificate information
Information about the certificate itself, including a
unique serial number and a validity period, defined
by start and end dates.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Digital certificates

• Digital signature
The combination of all of the above data uniquely
identifies the digital certificate. The signature data is
encrypted with the CA’s private key to confirm that
the data is correct. The algorithm used to generate
the digital signature is also specified.

• Public key information
The public key of the CA is included along with the
key size and the encryption algorithm used. The
public key may be used to decrypt the digital
signature.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Digital certificates

• As a product provider you inevitably store
information about your users and, for cloud-based
products, user data.

• Encryption can be used to reduce the damage that
may occur from data theft. If information is
encrypted, it is impossible, or very expensive, for
thieves to access and use the unencrypted data.
– Data in transit
– Data at rest
– Data in use

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data encryption

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption levels

Application

Database

Files

Media

• Key management is important because, if you get it
wrong, unauthorized users may be able to access
your keys and so decrypt supposedly private data.
Even worse, if you lose encryption keys, then your
encrypted data may be permanently inaccessible.

• A key management system (KMS) is a specialized
database that is designed to securely store and
manage encryption keys, digital certificates and
other confidential information.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Key management

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using a KMS for
encryption management

Application

Calls

Keys

Key
management
system (KMS)

Encryption
engine

Stored
encrypted dataKey store

Unencrypted
data

API

• Business may be required by accounting and other regulations
to keep copies of all of their data for several years.
– For example, in the UK, tax and company data has to be

maintained for at least six years, with a longer retention
period for some types of data. Data protection regulations
may require that this data be stored securely, so the data
should be encrypted.

• To reduce the risks of a security breach, encryption keys
should be changed regularly. This means that archival data
may be encrypted with a different key from the current data
in your system.

• Therefore, key management systems must maintain multiple,
timestamped versions of keys so that system backups and
archives can be decrypted if required.

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Long-term key storage

• Privacy is a social concept that relates to the collection,
dissemination and appropriate use of personal information held
by a third-party such as a company or a hospital.

• The importance of privacy has changed over time and individuals
have their own views on what degree of privacy is important.

• Culture and age also affect peoples’ views on what privacy means.
– Younger people were early adopters of the first social

networks and many of them seem to be less inhibited about
sharing personal information on these platforms than older
people.

– In some countries, the level of income earned by an individual
is seen as a private matter; in others, all tax returns are openly
published.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy

• If you are offering a product directly to consumers and you fail
to conform to privacy regulations, then you may be subject to
legal action by product buyers or by a data regulator. If your
conformance is weaker than the protection offered by data
protection regulations in some countries, you won’t be able to
sell your product in these countries.

• If your product is a business product, business customers
require privacy safeguards so that they are not put at risk of
privacy violations and legal action by users.

• If personal information is leaked or misused, even if this is not
seen as a violation of privacy regulations, this can lead to
serious reputational damage. Customers may stop using your
product because of this.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Business reasons for privacy

• In many countries, the right to individual privacy is
protected by data protection laws.

• These laws limit the collection, dissemination and
use of personal data to the purposes for which it was
collected.
– For example, a travel insurance company may collect

health information so that they can assess their level
of risk. This is legal and permissible.

– However, it would not be legal for those companies to
use this information to target online advertising of
health products, unless their users had given specific
permission for this.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection laws

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection laws

Data protection law

Responsibilities of
the data controller

Rights of
the data subject

Data storage
Data use
Security

Subject access

Data access
Error correction

Data deletion
Consent

• Awareness and control
Users of your product must be made aware of what data is
collected when they are using your product, and must have
control over the personal information that you collect from them.

• Purpose
You must tell users why data is being collected and you must not
use that data for other purposes.

• Consent
You must always have the consent of a user before you disclose
their data to other people.

• Data lifetime
You must not keep data for longer than you need to. If a user
deletes their account, you must delete the personal data
associated with that account.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection principles

• Secure storage
You must maintain data securely so that it cannot be tampered
with or disclosed to unauthorized people.

• Discovery and error correction
You must allow users to find out what personal data that you
store. You must provide a way for users to correct errors in their
personal data.

• Location
You must not store data in countries where weaker data
protection laws apply unless there is an explicit agreement that
the stronger data protection rules will be upheld.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection principles

• You should to establish a privacy policy that
defines how personal and sensitive information
about users is collected, stored and managed.

• Software products use data in different ways, so
your privacy policy has to define the personal
data that you will collect and how you will use
that data.

• Product users should be able to review your
privacy policy and change their preferences
regarding the information that you store.

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy policy

• Your privacy policy is a legal document and it should be
auditable to check that it is consistent with the data
protection laws in countries where your software is
sold.

• Privacy policies should not be expressed to users
in a long ‘terms and conditions’ document that,
in practice, nobody reads.

• The General Data Protection Regulation (GDPR) now
require software companies to include a summary of
their privacy policy, written in plain language rather
than legal jargon, on their website.

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy policy

• Security is a technical concept that relates to a software
system’s ability to protect itself from malicious attacks
that may threaten its availability, the integrity of the
system and/or its data, and the theft of confidential
information.

• Common types of attack on software products include
– injection attacks,
– cross-site scripting attacks,
– session hijacking attacks,
– denial of service attacks and
– brute force attacks.

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Authentication may be based on something a user
knows, something a user has, or some physical
attribute of the user.

• Federated authentication involves devolving
responsibility for authentication to a third-party such
as Facebook or Google, or to a business’s
authentication service.

• Authorization involves controlling access to system
resources based on the user’s authenticated identity.
Access control lists are the most commonly-used
mechanism to implement authorization.

78Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Symmetric encryption involves encrypting and
decrypting information with the same secret key.

• Asymmetric encryption uses a key pair – a private
key and a public key. Information encrypted using the
public key can only be decrypted using the private
key.

• A major issue in symmetric encryption is key
exchange.

• The Transport Layer Security (TLS) protocol, which is
used to secure web traffic, gets around this problem
by using asymmetric encryption for transferring
information used to generate a shared key.

79Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• If your product stores sensitive user data, you should
encrypt that data when it is not in use.

• A key management system (KMS) stores encryption
keys. Using a KMS is essential because a business
may have to manage thousands or even millions of
keys and may have to decrypt historic data that was
encrypted using an obsolete encryption key.

80Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Privacy is a social concept that relates to how people
feel about the release of their personal information
to others. Different countries and cultures have
different ideas on what information should and
should not be private.

• Data protection laws have been made in many
countries to protect individual privacy. They require
companies who manage user data to store it
securely, to ensure that it is not used or sold without
the permission of users, and to allow users to view
and correct personal data held by the system.

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

Reliable
Programming

82

Outline
• Software quality
• Programming for reliability
• Design pattern
• Refactoring

83

• Creating a successful software product does not
simply mean providing useful features for users.

• You need to create a high-quality product that
people want to use.

• Customers have to be confident that your
product will not crash or lose information, and
users have to be able to learn to use the software
quickly and without mistakes.

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software quality

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

• There are three simple techniques for
reliability improvement that can be applied in
any software company.
1. Fault avoidance: You should program in such a way

that you avoid introducing faults into your program.
2. Input validation: You should define the expected

format for user inputs and validate that all inputs
conform to that format.

3. Failure management: You should implement your
software so that program failures have minimal
impact on product users.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming for reliability

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Underlying causes of program errors

Program

Programmers make mistakes
because they don’t properly
understand the problem or

the application domain

Problem Technology

Programmers make mistakes
because they use unsuitable

technology or they don’t properly
understand the technologies used

Programming language,
libraries, database, IDE,

etc.

Programmers make mistakes because they
make simple slips or they do not completely

understand how multiple program components
work together the program’s state.

88Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

The shaded node interacts, in some ways, with
the linked nodes shown by the dotted line

• Complexity is related to the
number of relationships between elements
in a program and the type and nature of these
relationships

• The number of relationships between entities is
called the coupling. The higher the coupling, the
more complex the system.
– The shaded node has a relatively high coupling

because it has relationships with six other nodes.

89Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Program complexity

• A static relationship is one that is stable and
does not depend on program execution.
– Whether or not one component is

part of another component is a static relationship.

• Dynamic relationships, which change over time,
are more complex than static relationships.
– An example of a dynamic relationship is

the ‘calls’ relationship between functions.

90Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

91Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of complexity

Reading
complexity

Structural
complexity

Data
complexity

Decision
complexity

This reflects how hard it is to
read and understand the program.

This reflects the number and types of
relationship between the structures

(classes, objects, methods or functions) in your program.

This reflects the representations of
data used and relationships between
the data elements in your program.

This reflects the complexity of
the decisions in your program

92Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines

Structural complexity

• Functions should do one thing and one thing only

• Functions should never have side-effects

• Every class should have a single responsibility

• Minimize the depth of inheritance hierarchies

• Avoid multiple inheritance

• Avoid threads (parallelism) unless absolutely necessary

93Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines

Data complexity

• Define interfaces for all abstractions
• Define abstract data types

• Avoid using floating-point numbers
• Never use data aliases

94Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines

Conditional complexity

• Avoid deeply nested conditional statements
• Avoid complex conditional expressions

• You should design classes so that there is only
a single reason to change a class.
– If you adopt this approach, your classes will be

smaller and more cohesive.
– They will therefore be less complex and easier to

understand and change.

• The single responsibility principle
– Gather together the things that change for the same

reasons.
– Separate those things that change for different

reasons
95Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Ensure that every class
has a single responsibility

96Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory class

DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

(a) (b)

• One way of making this change is to
add a printInventory method
– This change breaks the single responsibility principle

as it then adds an additional ‘reason to change’ the
class.

• Instead of adding a printInventory method
to DeviceInventory,
it is better to
add a new class to represent the printed report.

97Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Adding a printInventory method

98Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory and InventoryReport classes

DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

• Deeply nested conditional (if) statements are used when you
need to identify which of a possible set of choices is to be
made.

• For example, the function ‘agecheck’ is a short Python
function that is used to calculate an age multiplier for
insurance premiums.
– The insurance company’s data suggests that the age and

experience of drivers affects the chances of them having an
accident, so premiums are adjusted to take this into account.

– It is good practice to name constants rather than using
absolute numbers, so Program names all constants that are
used.

99Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deeply
nested conditional statements

100Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

YOUNG_DRIVER_AGE_LIMIT = 25
OLDER_DRIVER_AGE = 70
ELDERLY_DRIVER_AGE = 80
YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2
OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5
ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2
NO_MULTIPLIER = 1
YOUNG_DRIVER_EXPERIENCE = 2
OLDER_DRIVER_EXPERIENCE = 5

def agecheck(age, experience):
Assigns a premium multiplier depending on the age and experience of the driver

multiplier = NO_MULTIPLIER
if age <= YOUNG_DRIVER_AGE_LIMIT:

if experience <= YOUNG_DRIVER_EXPERIENCE:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

else:
multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER

else:

if age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE:
if experience <= OLDER_DRIVER_EXPERIENCE:

multiplier = OLDER_DRIVER_PREMIUM_MULTIPLIER
else:

multiplier = NO_MULTIPLIER

else:
if age > ELDERLY_DRIVER_AGE:

multiplier = ELDERLY_DRIVER_PREMIUM_MULTIPLIER
return multiplier

Deeply nested if-then-else
statements

101Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

def agecheck_with_guards(age, experience):

if age <= YOUNG_DRIVER_AGE_LIMIT and experience <=
YOUNG_DRIVER_EXPERIENCE:

return YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:
return YOUNG_DRIVER_PREMIUM_MULTIPLIER

if (age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE) and experience
<= OLDER_DRIVER_EXPERIENCE:

return OLDER_DRIVER_PREMIUM_MULTIPLIER
if age > ELDERLY_DRIVER_AGE:

return ELDERLY_DRIVER_PREMIUM_MULTIPLIER
return NO_MULTIPLIER

Using guards to
make a selection

• Inheritance allows the attributes and methods of a class,
such as RoadVehicle, can be inherited by sub-classes,
such as Truck, Car and MotorBike.

• Inheritance appears to be an effective and efficient way of
reusing code and of making changes that affect all subclasses.

• However, inheritance increases the structural complexity of code
as it increases the coupling of subclasses.

• The problem with deep inheritance is that if you want to make
changes to a class, you have to look at all of its superclasses to see
where it is best to make the change.

• You also have to look at all of the related subclasses to check that
the change does not have unwanted consequences. It’s easy to
make mistakes when you are doing this analysis and introduce
faults into your program.

102Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deep inheritance hierarchies

103Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Part of the inheritance
hierarchy for hospital staff

Hospital staff

Technicians Paramedics Clinical staff Scientist Ancillary staff Admin staff

Doctor Nurse Physiotherapist

Midwife Ward nurse Nurse
Manager

• Definition
–A general reusable solution to a

commonly-occurring problem
within a given context in software design.

104Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern definition

• Design patterns are object-oriented and describe
solutions in terms of objects and classes.

• They are not off-the-shelf solutions that can be
directly expressed as code in an object-oriented
language.

• They describe the structure of a problem solution
but have to be adapted to suit your application
and the programming language that you are
using.

105Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern

• Separation of concerns
– This means that each abstraction in the program

(class, method, etc.) should address a separate
concern and that all aspects of that concern should
be covered there.

• Separate the ‘what’ from the ‘how
– If a program component provides a particular service,

you should make available only the information that
is required to use that service (the ‘what’). The
implementation of the service (‘the how’) should be
of no interest to service users.

106Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming principles

• Creational patterns
– These are concerned with class and object creation. They define

ways of instantiating and initializing objects and classes that are
more abstract than the basic class and object creation mechanisms
defined in a programming language.

• Structural patterns
– These are concerned with class and object composition. Structural

design patterns are a description of how classes and objects may be
combined to create larger structures.

• Behavioural patterns
– These are concerned with class and object communication. They

show how objects interact by exchanging messages, the activities in
a process and how these are distributed amongst the participating
objects.

107Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Common types of design patterns

• Design patterns are usually documented in the
stylized way. This includes:
– a meaningful name for the pattern and a brief

description of what it does;
– a description of the problem it solves;
– a description of the solution and its

implementation;
– the consequences and trade-offs of using the

pattern and other issues that you should
consider.

108Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Pattern description

• Refactoring means changing a program to reduce
its complexity without changing the external
behaviour of that program.

• Refactoring makes a program more readable (so
reducing the ‘reading complexity’) and more
understandable.

• It also makes it easier to change, which means
that you reduce the chances of making mistakes
when you introduce new features.

109Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

• The reality of programming is that as you make
changes and additions to existing code, you
inevitably increase its complexity.
– The code becomes harder to understand and change.
– The abstractions and operations that you started with

become more and more complex because you modify
them in ways that you did not originally anticipate.

110Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

111Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

• The starting point for refactoring should be to
identify code ‘smells’.

• Code smells are indicators in the code that there
might be a deeper problem.
– For example, very large classes may indicate that the

class is trying to do too much. This probably means
that its structural complexity is high.

112Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code smells

• Large classes
Large classes may mean that the single
responsibility principle is being violated. Break
down large classes into easier-to-understand,
smaller classes.

• Long methods/functions
Long methods or functions may indicate that the
function is doing more than one thing. Split into
smaller, more specific functions or methods.

113Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Duplicated code
Duplicated code may mean that when changes are
needed, these have to be made everywhere the code is
duplicated. Rewrite to create a single instance of the
duplicated code that is used as required

• Meaningless names
Meaningless names are a sign of programmer haste.
They make the code harder to understand. Replace with
meaningful names and check for other shortcuts that
the programmer may have taken.

114Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Unused code
This simply increases the reading complexity of
the code. Delete it even if it has been
commented out. If you find you need it later, you
should be able to retrieve it from the code
management system.

115Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Reading complexity
You can rename variable, function and class
names throughout your program to make their
purpose more obvious.

• Structural complexity
You can break long classes or functions into
shorter units that are likely to be more cohesive
than the original large class.

116Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Data complexity
You can simplify data by changing your database
schema or reducing its complexity. For example,
you can merge related tables in your database to
remove duplicated data held in these tables.

• Decision complexity
You can replace a series of deeply nested if-then-
else statements with guard clauses.

117Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Exceptions are events that disrupt the normal
flow of processing in a program.

• When an exception occurs, control is
automatically transferred to exception
management code.

• Most modern programming languages include a
mechanism for exception handling.

• In Python, you use **try-except** keywords to
indicate exception handling code;
in Java, the equivalent keywords are **try-catch.**

118Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

119Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

Executing code

Exception-handling
block

Exception raised

Normal processing

Normal processing

Exit

Exception re-raised or
abnormal exit

Exception-handling code

120

try:
f = open(”file1.txt")
f.write(”Hello World")

except:
print(”writing file error!")

finally:
f.close()

Python
try: except: finally:

Source: Python Try Except: https://www.w3schools.com/python/python_try_except.asp

121Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Auto-save and activity logging

Auto-save Command
logger

Crash
recovery

Last
saved state

Command
executed

Restored
state

• The most important quality attributes for most
software products are reliability, security, availability,
usability, responsiveness and maintainability.

• To avoid introducing faults into your program, you
should use programming practices that reduce the
probability that you will make mistakes.

• You should always aim to minimize complexity in your
programs. Complexity makes programs harder to
understand. It increases the chances of programmer
errors and makes the program more difficult to change.

122Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Design patterns are tried and tested solutions to
commonly occurring problems. Using patterns is an
effective way of reducing program complexity.

• Refactoring is the process of reducing the complexity of
an existing program without changing its functionality. It
is good practice to refactor your program regularly to
make it easier to read and understand.

• Input validation involves checking all user inputs to
ensure that they are in the format that is expected by
your program. Input validation helps avoid the
introduction of malicious code into your system and
traps user errors that can pollute your database.

123Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Regular expressions are a way of defining patterns that
can match a range of possible input strings. Regular
expression matching is a compact and fast way of
checking that an input string conforms to the rules you
have defined.

• You should check that numbers have sensible values
depending on the type of input expected. You should
also check number sequences for feasibility.

• You should assume that your program may fail and to
manage these failures so that they have minimal
impact on the user.

124Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Exception management is supported in most modern
programming languages. Control is transferred to your
own exception handler to deal with the failure when a
program exception is detected.

• You should log user updates and maintain user data
snapshots as your program executes. In the event of a
failure, you can use these to recover the work that the
user has done. You should also include ways of
recognizing and recovering from external service
failures.

125Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.
• Ian Sommerville (2015), Software Engineering, 10th Edition,

Pearson.
• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software

Engineering at Google: Lessons Learned from Programming Over
Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project
Management Body of Knowledge (PMBOK Guide) – Seventh Edition
and The Standard for Project Management, PMI

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth Edition,
Project Management Institute

• Project Management Institute (2017), Agile Practice Guide, Project
Management Institute

126

