永續數據分析 (Sustainability and ESG Data Analytics)

ESG數據報告、企業永續報告書

(ESG Data Reporting, Corporate Sustainability Reports)

1122ESGDA07 DM4, NTPU (N4084) (Spring 2024) Fri, 10, 11, 12 (18:30-21:15) (臺北大學民生校區 305)

Professor

Institute of Information Management, National Taipei University

https://meet.google.com/

miy-fbif-max

課程大綱 (Syllabus)

- 週次 (Week) 日期 (Date) 內容 (Subject/Topics)
- 1 2024/02/23 永續數據分析概論 (Introduction Sustainability and ESG Data Analytics)
- 2 2024/03/01 環境、社會與治理 (ESG) 淨零數位轉型 (Environmental, Social, and Governance (ESG) in Net-Zero Digital Transformation)
- 3 2024/03/08 永續與ESG 資料科學 (Data Science for Sustainability and ESG)
- 4 2024/03/15 永續數據分析個案研究 I (Case Study on Sustainability and ESG Data Analytics I)
- 5 2024/03/22 Web 3.0 和大數據分析在金融科技、綠色永續金融 (Web 3.0 and Big Data Analysis in Fintech, Green and Sustainable Finance)

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

6 2024/03/29 TCFD 氣候相關財務揭露與En-ROADS 氣候變遷模擬 (Task Force on Climate-Related Financial Disclosures (TCFD) and En-Roads Interactive)

7 2024/04/05 放假 (No Classes)

8 2024/04/12 期中報告 (Midterm Project Report)

9 2024/04/19 ESG數據的收集、分析和視覺化 (ESG Data Gathering, Analysis, and Visualization)

10 2024/04/26 ESG數據報告 (ESG Data Reporting); 企業永續報告書 (Corporate Sustainability Reports)

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

11 2024/05/03 ESG數據驗證 (ESG Data Verification)

12 2024/05/10 永續數據分析個案研究 Ⅱ (Case Study on Sustainability and ESG Data Analytics Ⅱ)

13 2024/05/17 能源之星報告與數據揭露 (Energy Star Reporting and Data Disclosure)

14 2024/05/24 人工智慧物聯網在ESG永續應用

(Artificial Intelligence of things (AIoT) in ESG and Sustainability Applications)

15 2024/05/31 生成式AI於永續評等和報告生成 (Generative AI for ESG Rating and Reporting Generation)

16 2024/06/07 期末報告 (Final Project Report)

ESG Data Reporting, Corporate Sustainability Reports

Outline

- ESG Data Reporting
- Corporate Sustainability Reports

Sustainability and ESG Data Analytics

Importance of ESG Reporting Why ESG Data Reporting Matters

- Informed decision-making for investors
- Transparency and building trust
- Identifying risks and opportunities
- Benchmarking against peers

Essential Python Libraries for ESG Data Reporting

- Pandas
 - Data loading, manipulation, cleaning
- NumPy
 - Numerical calculations
- Matplotlib/Seaborn
 - Data visualization

Collecting ESG Data

- Free repositories
 - MSCI ESG Ratings
 - Sustainalytics
- Paid Providers
 - Highlight specialization and more granular data
- Company Websites
 - Sustainability reports, investor relations

Processing and Analyzing ESG Data Transforming Data into Insights

- Cleaning and preprocessing
 - handling missing data
- Calculating ESG Scores or metrics
- Normalization
 - for cross-company comparison

Corporate Sustainability Reports Why Analyze Sustainability Reports?

- The Power of Data-Driven ESG Analysis
- Speed and scale compared to manual reading
- Track performance trends more precisely
- Deeper insights and comparisons
- Identify areas for critical evaluation

Python for Sustainability Reports Analysis

- BeautifulSoup
 - Handle HTML reports
- pdfminer.six
 - Extract text from PDF reports
- Pandas
 - Store and manipulate extracted data
- Matplotlib/Seaborn
 - Data visualization

Corporate Sustainability ReportsFinding Sustainability Data

- Company Websites
 - Investor relations section, dedicated reports page
- Sustainability Report Repositories
 - GRI, etc.

Extracting Data (HTML) Scraping Data from Web-Based Reports

- Finding the right HTML tags
 - (using browser inspection tools)
- BeautifulSoup to parse and extract into structured data

Extracting Data (PDF)Handling PDF-Based Reports

- Using pdfminer.six for text conversion
- Potential use of regular expressions for cleaning

Analysis with Pandas Turning Data into Insights

- Loading into DataFrames
- Cleaning (handling missing values, formats)
- Calculating ESG metrics or ratios
- Comparing data across years

Visualizing Results Communicating ESG Performance

- Choose charts that align with analysis goals
- Clear visuals: labeling, annotations

MSCI ESG Rating Framework

DATA

1,000+ data points on ESG policies, programs, and performance;

Data on 100,000 individual directors; up to 20 years of shareholder meeting results

EXPOSURE METRICS

How exposed is the company to each material issue?

Based on over 80 business and geographic segment metrics

MANAGEMENT METRICS

How is the company managing each material issue? 150 policy/program metrics, 20 performance metrics; 100+ Governance Key Metrics

SOURCES |

100+ specialized datasets (government, NGO, models)

Company disclosure (10-K, sustainability report, proxy report)

3,400+ media sources monitored daily (global and local news sources, governments, NGOs)

KEY ISSUE SCORES & WEIGHTS

35 Key Issues selected annually for each industry and weighted based on MSCI's materiality mapping framework.

ESG RATING (AAA-CCC)

Issue scores and weights combine to overall ESG rating relative to industry peers.

Individual E, S, G scores also available

INSIGHT

Specialized ESG research team provides additional insight through:

Company reports
Industry reports
Thematic reports
Analyst calls & webinars

Systematic, ongoing daily monitoring of controversies and governance events

In-depth quality review processes at all stages of rating, including formal committee review

DATA OUTPUTS

Access to selected underlying data Ratings, scores, and weights on 680,000 securities 17 years of history

MSCI ESG Key Issue Hierarchy

3 Pillars	10 Themes	35 ESG Key Issues		
Environment	Climate Change	Carbon Emissions	Financing Environmental Impact	
		Product Carbon Footprint	Climate Change Vulnerability	
	Natural Capital	Water Stress	Raw Material Sourcing	
		Biodiversity & Land Use		
Pollution &		Toxic Emissions & Waste	Electronic Waste	
	Waste	Packaging Material & Waste		
	Environmental	Opportunities in Clean Tech	Opportunities in Renewable Energy	
	Opportunities	Opportunities in Green Building		
Social	Human Capital	Labor Management	Human Capital Development	
		Health & Safety	Supply Chain Labor Standards	
	Product Liability	Product Safety & Quality	Privacy & Data Security	
		Chemical Safety	Responsible Investment	
		Consumer Financial Protection	Health & Demographic Risk	
	Stakeholder	Controversial Sourcing		
	Opposition	Community Relations		
	Social	Access to Communications	Access to Health Care	
	Opportunities	Access to Finance	Opportunities in Nutrition & Health	
Governance	Corporate	Ownership & Control	Pay	
	Governance	Board	Accounting	
	Corporate	Business Ethics		
	Behavior	Tax Transparency		

MSCI Governance Model Structure

MSCI Hierarchy of ESG Scores

DJSI S&P Global ESG Score

8,000

Companies

90%

Global market capitalization

340,000+

Current Research Universe and Active Securities

FTSE Russell ESG Ratings


```
# ESG Data Analysis and Visualization
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import random
# Generate synthetic data
np.random.seed(0)
data = {
   'company': ['Company A', 'Company B', 'Company C', 'Company D', 'Company E'],
   'emissions': np.random.randint(10000, 50000, 5),
   'diversity': np.random.uniform(0.2, 0.9, 5),
   'employee satisfaction': np.random.uniform(60, 90, 5),
   'waste type': ['Plastic', 'Organic', 'Electronic', 'Metal', 'Other'],
   'waste amount': np.random.randint(100, 500, 5)
df = pd.DataFrame(data)
```

```
# Separate DataFrame for time series and correlation
time series data = pd.DataFrame({
   'year': np.repeat(np.arange(2018, 2023), 5),
   'company': np.tile(['Company A', 'Company B', 'Company C', 'Company
   D', 'Company E'], 5),
   'energy use': np.random.randint(1000, 5000, 25)
# Simulating correlation data with a slight positive trend
diversity = np.linspace(0.2, 0.9, 100)
np.random.shuffle(diversity)
employee satisfaction = 60 + (diversity - 0.2) * 150
employee satisfaction += np.random.normal(0, 5, 100)
correlation data = pd.DataFrame({
   'diversity': diversity,
   'employee satisfaction': employee satisfaction
```

```
# Save DataFrame to CSV
df.to_csv('ESG_Dataset.csv', index=False)

# Calculate statistics for each company
statistics = df.describe()
statistics = statistics.applymap(lambda x: format(x, '.4f'))
print(statistics)
statistics.to_csv('Company_ESG_Statistics.csv')
```

	emissions	diversity	employee_satisfaction	n waste_amount
count	5.0000	5.0000	5.0000	5.0000
mean	31447.6000	0.4085	77.1504	345.6000
std	11667.5748	0.1099	7.0841	94.8093
min	12732.0000	0.2397	70.1219	215.0000
25%	30757.0000	0.3909	71.7835	297.0000
50%	31243.0000	0.4083	74.3993	343.0000
75%	40403.0000	0.4691	84.3651	435.0000
max	42103.0000	0.5344	85.0824	438.0000

```
# Create visualizations and save them at 300 dpi
# Bar Chart for Emissions
plt.figure(figsize=(8, 4))
plt.bar(df['company'], df['emissions'], color='skyblue')
plt.xlabel('Company')
plt.ylabel('Emissions (Tonnes)')
plt.title('ESG Comparison of Company Emissions')
plt.show()
plt.savefig('ESG Company_Emissions.jpg', format='jpg', dpi=300)
```



```
# Line Chart for Energy Use
plt.figure(figsize=(8, 4))
for company in time series data['company'].unique():
   company data = time series data[time series data['company'] ==
   company]
   company data = company data.sort values(by='year')
   plt.plot(company data['year'], company data['energy use'],
   marker='o', linestyle='-', label=company)
plt.xlabel('Year')
plt.ylabel('Energy Use (kWh)')
plt.title("ESG Companies' Energy Use Over Time")
plt.xticks(company data['year'].unique()) # Ensuring only whole years
are marked
plt.legend()
plt.grid(True)
plt.show()
```



```
# Scatter Plot for Diversity vs. Satisfaction
plt.figure(figsize=(8, 4))
plt.scatter(correlation data['diversity'],
correlation data['employee satisfaction'], alpha=0.7)
plt.xlabel('Board Diversity (Ratio)')
plt.ylabel('Employee Satisfaction (%)')
plt.title('ESG Correlation Between Board Diversity and Employee
Satisfaction')
plt.grid(True)
plt.show()
plt.savefig('ESG Diversity vs Satisfaction.jpg', format='jpg', dpi=300)
```



```
# Pie Chart for Waste Types
plt.figure(figsize=(8, 4))
plt.pie(df['waste_amount'], labels=df['waste_type'], autopct='%1.1f%%',
startangle=140)
plt.title('ESG Waste Types')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a
circle.
plt.show()
plt.savefig('ESG_Waste_Type_Breakdown.jpg', format='jpg', dpi=300)
```

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Summary

- ESG Data Reporting
- Corporate Sustainability Reports

References

- Cino Robin Castelli, Cyril Shmatov (2022), Quantitative Methods for ESG Finance, Wiley
- Simon Thompson (2023), Green and Sustainable Finance: Principles and Practice in Banking, Investment and Insurance, 2nd Edition, Kogan Page.
- Chrissa Pagitsas (2023), Chief Sustainability Officers At Work: How CSOs Build Successful Sustainability and ESG Strategies, Apress.
- Min-Yuh Day (2024), Python 101, https://tinyurl.com/aintpupython101