Artificial Intelligence

Introduction to Artificial Intelligence

1141AI01 MBA, IM, NTPU (M5276) (Fall 2025) Tue 2, 3, 4 (9:10-12:00) (B3F17)

https://meet.google.com/

DVIDIA

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

Cloud **Ambassador**

2020 Cohort

Prof. Min-Yuh Day

Director, Information Management, NTPU

Director, Intelligent Financial Innovation Technology, IFIT Lab, IM, NTPU Director, Fintech and Green Finance Center (FGFC), NTPU Division Director, Sustainable Development, Sustainability Office, NTPU

Visiting Scholar, IIS, Academia Sinica Ph.D., Information Management, NTU

Artificial Intelligence, Financial Technology, Big Data Analytics, **Data Mining and Text Mining, Electronic Commerce**

Course Syllabus National Taipei University Academic Year 114, 1st Semester (Fall 2025)

- Course Title: Artificial Intelligence
- Instructor: Min-Yuh Day
- Course Class: MBA, IM, NTPU (3 Credits, Elective)
- Details
 - In-Class and Distance Learning EMI Course (3 Credits, Elective, One Semester) (M5276)
- Time & Place: Tue, 2, 3, 4, (9:10-12:00) (B3F17)
- Google Meet: https://meet.google.com/paj-zhhj-mya

Course Objectives

- 1. Understand the fundamental concepts and research issues of <u>Artificial Intelligence</u>.
- 2. Equip with Hands-on practices of <u>Artificial Intelligence</u>.
- 3. Conduct information systems research in the context of Artificial Intelligence.

Course Outline

- This course introduces the fundamental concepts, research issues, and hands-on practices of Artificial Intelligence.
- Topics include:
 - 1. Introduction to Artificial Intelligence
 - 2. Artificial Intelligence and Intelligent Agents; Problem Solving
 - 3. Knowledge, Reasoning and Knowledge Representation
 - 4. Uncertain Knowledge and Reasoning
 - 5. Machine Learning: Supervised and Unsupervised Learning
 - 6. The Theory of Learning and Ensemble Learning
 - 7. NVIDIA Fundamentals of Deep Learning
 - 8. Natural Language Processing
 - 9. Computer Vision and Robotics
 - 10. Generative AI, Agentic AI, and Physical AI
 - 11. Philosophy and Ethics of AI and the Future of AI
 - 12. Case Study on Al

Core Competence

 Exploring new knowledge in information technology, system development and application 80 %

Internet marketing planning ability 10 %

Thesis writing and independent research skills 10 %

Four Fundamental Qualities

- Professionalism
 - Creative thinking and Problem-solving 40 %
 - Comprehensive Integration 40 %
- Interpersonal Relationship
 - Communication and Coordination 10 %
 - Teamwork 5 %
- Ethics
 - Honesty and Integrity 0 %
 - Self-Esteem and Self-reflection 0 %
- International Vision
 - Caring for Diversity 0 %
 - Interdisciplinary Vision 5 %

College Learning Goals

- Ethics/Corporate Social Responsibility
- Global Knowledge/Awareness
- Communication
- Analytical and Critical Thinking

- Information Technologies and System Development Capabilities
- Internet Marketing Management Capabilities
- Research capabilities

Syllabus

Week Date Subject/Topics

- 1 2025/09/09 Introduction to Artificial Intelligence
- 2 2025/09/16 Artificial Intelligence and Intelligent Agents; Problem Solving
- 3 2025/09/23 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 4 2025/09/30 Case Study on Artificial Intelligence I
- 5 2025/10/07 Machine Learning: Supervised and Unsupervised Learning; The Theory of Learning and Ensemble Learning

Syllabus

Week Date Subject/Topics

6 2025/10/14 NVIDIA Fundamentals of Deep Learning I: Deep Learning; Neural Networks

7 2025/10/21 NVIDIA Fundamentals of Deep Learning II:
Convolutional Neural Networks;
Data Augmentation and Deployment

8 2025/10/28 Self-Learning

9 2025/11/04 Midterm Project Report

10 2025/11/11 NVIDIA Fundamentals of Deep Learning III:

Pre-trained Models; Natural Language Processing

Syllabus

Week Date Subject/Topics

- 11 2025/11/18 Case Study on Artificial Intelligence II
- 12 2025/11/25 Computer Vision and Robotics
- 13 2025/12/02 Generative AI, Agentic AI, and Physical AI
- 14 2025/12/09 Philosophy and Ethics of AI and the Future of AI
- 15 2025/12/16 Final Project Report I
- 16 2025/12/23 Final Project Report II

Teaching Methods and Activities

- Lecture
- Discussion
- Practicum

Evaluation Methods

- Individual Presentation 60 %
- Group Presentation 10 %
- Case Report 10 %
- Class Participation 10 %
- Assignment 10 %

Required Texts

Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,
4th Edition, Pearson.

Reference Books

- Thomas R. Caldwell (2025), The Agentic AI Bible: The Complete and Up-to-Date Guide to Design, Build, and Scale Goal-Driven, LLM-Powered Agents that Think, Execute and Evolve, Independently published
- Numa Dhamani and Maggie Engler (2024), Introduction to Generative AI, Manning
- Denis Rothman (2024), Transformers for Natural Language Processing and Computer Vision Third Edition: Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3, 3rd ed. Edition, Packt Publishing
- Ben Auffarth (2023), Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs, Packt Publishing.
- Aurélien Géron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.

Stuart Russell and Peter Norvig (2020),

Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Thomas R. Caldwell (2025),

The Agentic Al Bible:

The Complete and Up-to-Date Guide to Design, Build, and Scale Goal-Driven, LLM-Powered Agents that Think, Execute and Evolve,

Independently published

Numa Dhamani and Maggie Engler (2024),

Introduction to Generative AI,

Manning

Denis Rothman (2024),

Transformers for Natural Language Processing and Computer Vision:

Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3, 3rd Edition, Packt Publishing

Ben Auffarth (2023),

Generative AI with LangChain:

Build large language model (LLM) apps with Python, ChatGPT and other LLMs, Packt Publishing.

Aurélien Géron (2022),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems,

3rd Edition, O'Reilly Media

https://github.com/ageron/handson-ml3

Steven D'Ascoli (2022),

Artificial Intelligence and Deep Learning with Python:

Every Line of Code Explained For Readers New to AI and New to Python, Independently published.

Nithin Buduma, Nikhil Buduma, Joe Papa (2022),

Fundamentals of Deep Learning:

Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.

NVIDIA Developer Program

https://developer.nvidia.com/join-nvidia-developer-program

NVIDIA Deep Learning Institute (DLI)

https://learn.nvidia.com/

Artificial Intelligence (AI)

AI, ML, DL, Generative AI

Generative AI, Agentic AI, Physical AI

Physical AI

Self-driving cars General robotics

Agentic Al

Coding assistants Customer service Patient care

Generative Al

Digital marketing Content creation

Perception Al

Speech recognition
Deep recommender systems
Medical imaging

2012 AlexNet

Deep learning breakthrough

Generative Al

From Generative AI to Agentic AI

Generative AI (Gen AI) AI Generated Content (AIGC)

AI, Big Data, Cloud Computing Evolution of Decision Support, Business Intelligence, and Analytics

The Rise of Al

The Development of LM-based Dialogue Systems

1) Early Stage (1966 - 2015)

- 2) The Independent Development of TOD and ODD (2015 2019)
 - 3) Fusions of Dialogue Systems (2019 2022)
 - 4) LLM-based DS (2022 Now)

Task-oriented DS (TOD), Open-domain DS (ODD)

Definition of Artificial Intelligence (A.I.)

Artificial Intelligence

"... the science and engineering making intelligent machines" (John McCarthy, 1955)

Artificial Intelligence

"... technology that thinks and acts like humans"

Artificial Intelligence

"... intelligence exhibited by machines or software"

4 Approaches of Al

Thinking Rationally Thinking Humanly Acting Rationally Acting Humanly

4 Approaches of Al

2.

Thinking Humanly:
The Cognitive
Modeling Approach

3.

Thinking Rationally:
The "Laws of Thought"
Approach

1.

Acting Humanly:
The Turing Test
Approach (1950)

4.

Acting Rationally:
The Rational Agent
Approach

Al Acting Humanly: The Turing Test Approach

(Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
 - Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

Artificial Intelligence: Intelligent Agents

Artificial Intelligence: 2. Problem Solving

- Solving Problems by Searching
- Search in Complex Environments
- Adversarial Search and Games
- Constraint Satisfaction Problems

Artificial Intelligence: 3. Knowledge and Reasoning

- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Automated Planning

Artificial Intelligence:

4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

Artificial Intelligence: 5. Machine Learning

- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

Artificial Intelligence:

6. Communicating, Perceiving, and Acting

- Natural Language Processing
- Deep Learning for Natural Language
 Processing
- Computer Vision
- Robotics

Artificial Intelligence: Philosophy and Ethics of Al The Future of Al

Artificial Intelligence Machine Learning & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

AI, ML, DL

3 Machine Learning Algorithms

Machine Learning (ML)

Machine Learning (ML) / Deep Learning (DL)

AI for Text Analytics

Transformer Models

Large Language Models (LLMs)

Four Paradigms in NLP (LM)

Paradigm	Engineering	Task Relation
a. Fully Supervised Learning (Non-Neural Network)	Feature (e.g. word identity, part-of-speech, sentence length)	CLS TAG LM GEN
b. Fully Supervised Learning (Neural Network)	Architecture (e.g. convolutional, recurrent, self-attentional)	CLS TAG LM GEN
Transfer Learning: Pre-t	raining, Fine-Tuning (FT)	CLŞ
c. Pre-train, Fine-tune	Objective (e.g. masked language modeling, next sentence prediction)	LM
GAI: Pre-train, Prompt,	and Predict (Prompting)	CLSTAG
d. Pre-train, Prompt, Predict	Prompt (e.g. cloze, prefix)	LM

Generative Al Text, Image, Video, Audio **Applications**

Comparison of Generative AI and Traditional AI

Feature Generative Al Traditional Al

Output type New content

Classification/Prediction

Creativity |

High

Low

Interactivity Usually more natural Limited

Generative Al

- Generative AI: The Art of Creation
- Definition: Al systems capable of creating new content
- Characteristics: Creativity, interactivity

LMArena Leaderboard

Rank (UB) 1	Nodel ↑↓	Score ↑↓	95% CI (±) ↑↓	Votes ↑↓	Organization 1	License ↑↓
1	G gemini-2.5-pro	1455	±5	41,731	Google	Proprietary
1	A\ claude-opus-4-1-20250805-thinking-16k	1451	±6	11,750	Anthropic	Proprietary
2		1444	±4	43,898	OpenAl	Proprietary
2		1442	±6	15,076	OpenAl	Proprietary
2	\$\text{\$\text{\$chatgpt-40-latest-20250326}}	1441	±4	36,426	OpenAl	Proprietary
3	\$\text{gpt-4.5-preview-2025-02-27}	1439	±6	15,271	OpenAl	Proprietary
3	A\ claude-opus-4-1-20250805	1438	±6	18,341	Anthropic	Proprietary
5		1430	±6	11,808	OpenAl	Proprietary
6	<pre> qwen3-max-preview</pre>	1428	±7	8,781	Alibaba	Proprietary
8	x grok-4-0709	1422	±5	21,446	xAI	Proprietary

LMArena Leaderboard

Q Model > 239 / 239	Overall ↑↓	Hard Prompts ↑↓	Coding ↑↓	Math ↑↓	Creative Writing ↑↓	Instruction Following	Longer Query ↑↓	Multi-Turn ↑↓
A\ claude-opus-4-1	1	1	1	1	1	1	1	1
G gemini-2.5-pro	1	2	3	1	1	1	1	1
֍ chatgpt-4o-lates…	2	4	3	13	2	5	4	1
₲ gpt-5-high	2	2	3	1	7	5	11	6
	2	4	3	1	8	6	13	7
A\ claude-opus-4-1	3	2	1	1	1	1	1	1
₲ gpt-4.5-preview	3	5	4	8	1	4	3	1
₲ gpt-5-chat	5	3	3	8	3	5	3	1
p qwen3-max-preview	6	4	2	1	7	4	4	3
A\ claude-opus-4-20	8	4	3	6	2	2	2	7
❖ deepseek-r1-0528	8	8	4	10	8	15	13	14
▼ deepseek-v3.1	8	6	4	1	7	6	5	9
deepseek-v3.1-th	8	4	3	1	2	4	1	7
x1 grok-4-0709	8	10	12	1	4	6	8	7
kimi-k2-0711-pre	8	10	7	13	16	24	22	7
kimi-k2-0905-pre	8	5	3	-	6	16	12	7
🏇 qwen3-235b-a22b	8	4	3	2	9	6	4	7
ℤ glm-4.5	10	7	4	7	14	7	8	10

Artificial Analysis Intelligence Index Intelligence, Speed, Price

64

Artificial Analysis Intelligence Index 2022-2025

Frontier Language Model Intelligence, Over Time

Artificial Analysis Intelligence Index v3.0 incorporates 10 evaluations: MMLU-Pro, GPQA Diamond, Humanity's Last Exam, LiveCodeBench, SciCode, AIME 2025, IFBench, AA-LCR, Terminal-Bench Hard, τ^2 -Bench Telecom

Release Date

Google Gemma 3 27B

The most capable model you can run on a single GPU or TPU

Google Gemma 3 Multimodality (vision-language input and text outputs)

MODEL	SIZE (in billion parameter)	CONTEXT LENGTH	LANGUAGES	INPUT MODALITIES
Gemma 3 1B (IT)	1B	32k	English	Input: Text Output: Text
Gemma 3 4B (IT)	4B	128k	+140 Languages	Input: Text, Image Output: Text
Gemma 3 12B (IT)	12B	128k	+140 Languages	Input: Text, Image Output: Text
Gemma 3 27B (IT)	27B	128k	+140 Languages	Input: Text, Image Output: Text
Shield Gemma 2	4B	8k	+140 Languages	Input: Text, Image Output: Text

Google Gemma 3: Pre-training and Post-training

(distillation, reinforcement learning, and model merging)

Google Al Studio (Gemma 3 27B)

Grok 3 Deep Search

Perplexity.ai Deep Research

Token

Tiktokenizer

Add message

<|im_start|>system<|im_sep|>You are a helpful
assistant<|im_end|><|im_start|>user<|im_sep|><|im_end|>
<|im_start|>assistant<|im_sep|>

Token count 16

<|im_start|>system<|im_sep|>You are a helpful assistan
t<|im_end|><|im_start|>user<|im_sep|><|im_end|><|im_st
art|>assistant<|im_sep|>

200264, 17360, 200266, 3575, 553, 261, 10297, 29186, 2 00265, 200264, 1428, 200266, 200265, 200264, 173781, 2 00266

Show whitespace

Word Embeddings

Transformer (Attention is All You Need)

(Vaswani et al., 2017)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT

Fine-tuning BERT on Different Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Sentiment Analysis: Single Sentence Classification

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT on Question Answering (QA)

Start/End Span

(c) Question Answering Tasks: SQuAD v1.1

Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)

Single Sentence

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT on Dialogue Slot Filling (SF)

Single Sentence

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Task-Oriented Dialogue (ToD) System Speech, Text, NLP

"Book me a cab to Russell Square"

"When do you want to leave?"

Conversational Al

to deliver contextual and personal experience to users

Technological Integration for Multimodal AI

Large Language Model (LLM) based Agents

Large Multimodal Agents (LMA)

Large Multimodal Agents (LMA)

FinBrain: when Finance meets AI 2.0

(Zheng et al., 2019)

Technology-driven Financial Industry Development

Development stage	Driving technology	Main landscape	Inclusive finance	Relationship between technology and finance
Fintech 1.0 (financial IT)	Computer	Credit card, ATM, and CRMS	Low	Technology as a tool
Fintech 2.0 (Internet finance)	Mobile Internet	Marketplace lending, third-party payment, crowdfunding, and Internet insurance	Medium	Technology- driven change
Fintech 3.0 (financial intelligence)	Al, Big Data, Cloud Computing, Blockchain	Intelligent finance	High	Deep fusion

Deep learning for financial applications: **A survey Applied Soft Computing (2020)**

Source:

Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey."

Applied Soft Computing (2020): 106384.

Financial time series forecasting with deep learning: A systematic literature review: 2005-2019 **Applied Soft Computing (2020)**

Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Deep learning for financial applications: Topic-Model Heatmap

Deep learning for financial applications: Topic-Feature Heatmap

Deep learning for financial applications: Topic-Dataset Heatmap

Financial time series forecasting with deep learning: Topic-model heatmap

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

Browse State-of-the-Art

 Browse

Follow

L Discuss

Trends

About

Log In/Register

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 papers with code

1509 leaderboards • 1327 datasets • 1347 datasets • 17810 datasets

Follow on **Y** Twitter for updates

Computer Vision

▶ See all 707 tasks

Natural Language Processing

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

```
co python101.ipynb - Colaborator × +
             https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTuniMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3
        ♠ python101.ipynb ☆
                                                                                                                               COMMENT
                                                                                                                                              SHARE
        File Edit View Insert Runtime Tools Help
     CODE ☐ TEXT
★ CELL
★ CELL
                                                                                                                           ✓ CONNECTED ▼
                                                                                                                                              EDITING
            1 # Future Value
            2 pv = 100
            3 r = 0.1
            4 n = 7
            5 | fv = pv * ((1 + (r)) ** n)
            6 print(round(fv, 2))
      [→ 194.87
           1 amount = 100
            2 | interest = 10 \# 10\% = 0.01 * 10
            3 \text{ years} = 7
            5 future_value = amount * ((1 + (0.01 * interest)) ** years)
            6 print(round(future value, 2))
      Г⇒ 194.87
           1 # Python Function def
            2 def getfv(pv, r, n):
                fv = pv * ((1 + (r)) ** n)
                  return fv
            5 | fv = getfv(100, 0.1, 7)
            6 print(round(fv, 2))
      □→ 194.87
           1 # Python if else
            2 score = 80
            3 if score >=60 :
                  print("Pass")
            5 else:
                  print("Fail")
      Pass
```


Teaching

- Artificial Intelligence
 - Spring 2021, Fall 2022, Fall 2024, Fall 2025
- Sustainability and ESG Data Analytics
 - Spring 2024, Fall 2024, Fall 2025
- Software Engineering
 - Fall 2020, Fall, 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025
- Generative Al Innovative Applications
 - Spring 2025
- Artificial Intelligence in Finance and Quantitative
 - Fall 2021, Fall 2022, Fall 2023, Spring 2025
- Big Data Analytics
 - Fall 2020, Spring 2023, Spring 2024
- Artificial Intelligence for Text Analytics
 - Spring 2022, Fall 2023
- Python for Accounting Applications
 - Fall 2023, Fall 2024, ,Fall 2025
- Foundation of Business Cloud Computing
 - Spring 2021, Spring 2022, Spring 2023, Spring 2024

Research Projects

- 1. Generative AI Multi-Agent Systems with LLM-Based RAG for ESG Reporting Automation
 - NSTC (E4104), NSTC 114-2221-E-305-002-, 2025/08/01~2026/07/31
- 2. Innovative Agentic AI Technology for Autonomous ESG Report Generation
 - Industrial Technology Research Institute (ITRI), Fintech and Green Finance Center (FGFC, NTPU), NTPU-114A513E01, 2025/03/01~2025/12/31
- 3. Digital Support, Unimpeded Communication: The Development, Support and Promotion of Al-assisted Communication Assistive Devices for Speech Impairment(3/3), Sub-project 3: Multimodal Cross-lingual Task-Oriented Dialogue System for Inclusive Communication Support,
 - NSTC (HZZ22), NSTC 114-2425-H-305-003-, 3 Years (2023/05/01-2026/04/30) Year 3: 2025/05/01~2026/04/30
- 4. Research on speech processing, synthesis, recognition, and sentence construction of people with language disabilities, Sub-project 3: Multimodal Cross-lingual Task-Oriented Dialogue System
 - NTPU, 114-NTPU_ORDA-F-004, 3 Years (2023/01/01-2025/12/31) Year 3: 2025/01/01~2025/12/31
- 5. Development of a Deep Learning for Dental Implant Detection in Panoramic Radiographs,
 - University System of Taipei Joint Research Program (NTPU, TMU), USTP-NTPU-TMU-114-02, 2025/01/01~2025/12/31

Summary

- This course introduces the fundamental concepts, research issues, and hands-on practices of Artificial Intelligence.
- Topics include:
 - 1. Introduction to Artificial Intelligence
 - 2. Artificial Intelligence and Intelligent Agents; Problem Solving
 - 3. Knowledge, Reasoning and Knowledge Representation
 - 4. Uncertain Knowledge and Reasoning
 - 5. Machine Learning: Supervised and Unsupervised Learning
 - 6. The Theory of Learning and Ensemble Learning
 - 7. NVIDIA Fundamentals of Deep Learning
 - 8. Natural Language Processing
 - 9. Computer Vision and Robotics
 - 10. Generative AI, Agentic AI, and Physical AI
 - 11. Philosophy and Ethics of AI and the Future of AI
 - 12. Case Study on Al

University Ambassador Certified Instructor

Cloud Ambassador

2020 Cohort

aws certified

Solutions
Architect

Associate

Artificial Intelligence

Contact Information

Min-Yuh Day, Ph.D.

Professor and Director

Institute of Information Management, National Taipei University

Tel: 02-86741111 ext. 66873

Office: B8F12

Address: 151, University Rd., San Shia District, New Taipei City, 23741 Taiwan

Email: myday@gm.ntpu.edu.tw

Web: http://web.ntpu.edu.tw/~myday/

