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11.1 Method of Types
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Definitions

n Let X1, X2, . . . be a sequence of n symbols from an alphabet

X = {a1, a2, . . . , aM} where M = |X | is the number of

alphabets.

n xn ≡ x is a sequence x1, x2, . . . xn.

n The type Px (or empirical probability distribution) of a sequence

x1, x2, . . . xn is the relative frequency of each symbol of X .

Px(a) =
N(a|x)

n

for all a ∈ X where N(a|x) is the number of times the symbol a

occurs in the sequence x.

Example. Let X = {a, b, c}, x = aabca. Then the type Px = Paabca

is

Px(a) =
3

5
, Px(b) =

1

5
, Px(c) =

1

5
, or Px =

(
3

5
,
1

5
,
1

5

)
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Definitions

n The type class T (P ) is the set of sequences that have the same

type.

T (P ) = {x : Px = P}.
Example. Let X = {a, b, c}, x = aabca. Then the type

Px = Paabca is

Px(a) =
3

5
, Px(b) =

1

5
, Px(c) =

1

5
.

The type class T (Px) is the set of the length-5 sequences that have

3 a’s, 1 b and 1 c.

T (Px) = {aaabc, aabca, abcaa, bcaaa, . . . }.

The number of elements in T (Px) is

|T (Px)| =
(

5

3, 1, 1

)

=
5!

3!1!1!
= 20.
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Definitions

n Let Pn denote the set of types with denominator n. For example, if

X = {a, b, c},

Pn =
{(

x1

n
,
x2

n
,
x3

n

)

: x1 + x2 + x3 = n, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}

where x1 = P (a), x2 = P (b), x3 = P (c).

Theorem.

|Pn| ≤ (n+ 1)M

Proof.

Pn =
{(x1

n
,
x2

n
, . . . ,

xM

n

)}

where 0 ≤ xk ≤ n. Since there are n+ 1 choices for each xk, the

result follows. �
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Observations

n The number of sequences of length n is Mn. (exponential in n).

n The number of types of length n is (n+ 1)M . (polynomial in n).

n Therefore, at least one type has exponentially many sequences in its

type class.

n In fact, the largest type class has essentially the same number of

elements as the entire set of sequences.
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Theorem

Theorem. If X1, X2, . . . , Xn are drawn i.i.d. according to Q(x), the

probability of x depends only on its type and is given by

Qn(x) = 2−n(H(Px)+D(px||Q))

where

Qn(x) = Pr(x) =

n∏

i=1

Pr(xi) =

n∏

i=1

Q(xi).

Proof.

Qn(x) =
n∏

i=1

Q(xi) =
∏

a∈X

Q(a)N(a|x)

=
∏

a∈X

Q(a)nPx(a) =
∏

a∈X

2nPx(a) logQ(a)

= 2n
∑

a∈X
Px(a) logQ(a)
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Theorem

Proof. (cont.) Since

∑

a∈X

Px(a) logQ(a)

=
∑

a∈X

(Px(a) logQ(a) + Px(a) logPx(a)− Px(a) logPx(a))

=−H(Px)−D(Px||Q),

we have

Qn(x) = 2−n(H(Px)+D(Px||Q)). �

Corollary. If x is in the type class of Q, then

Qn(x) = 2−nH(Q).

Proof.

If x ∈ T (Q), then Px = Q and D(Px||Q) = 0. �
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Size of T(P)

Next, we will estimate the size of |T (P )|. The exact size of |T (P )| is

|T (P )| =
(

n

nP (a1), nP (a2), . . . , nP (aM)

)

.

This value is hard to manipulate. We give a simple bound of |T (P )|.
We need the following lemmas.
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Size of T(P)

Lemma.
m!

n!
≥ nm−n

Proof. For m ≥ n,we have

m!

n!
=

1× 2× · · · ×m

1× 2× · · · × n
= (n+ 1)(n+ 2)× · · · ×m

≥ n× n× . . . n
︸ ︷︷ ︸

m−n times

= nm−n

For m < n,

m!

n!
=

1× 2× · · · ×m

1× 2× · · · × n
=

1

(m+ 1)(m+ 2)× · · · × n

≥ 1

n× n× . . . n
︸ ︷︷ ︸

n−m times

=
1

nn−m
= nm−n

�
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Size of T(P)

Lemma. The type class T (P ) has the the highest probability among all

type classes under the probability distribution P .

P n(T (P )) ≥ P n(T (P̂ )) for all P̂ ∈ Pn.

Proof.

P n(T (P ))

P n(T (P̂ ))
=

|T (P )|
∏

a∈X P (a)nP (a)

|T (P̂ )|
∏

a∈X P (a)nP̂ (a)

=

(
n

nP (a1), nP (a2), . . . , nP (aM )

)
∏

a∈X

P (a)nP (a)

(
n

nP̂ (a1), nP̂ (a2), . . . , nP̂ (aM)

)
∏

a∈X

P (a)nP̂ (a)

=
∏ (nP̂ (a))!

(nP (a))!
P (a)n(P (a)−P̂ (a))
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Size of T(P)

Proof. (cont.)

≥
∏

a∈X

(nP (a))nP̂ (a)−nP (a)P (a)n(P (a)−P̂ (a))

=
∏

a∈X

nnP̂ (a)−nP (a)

= nn
∑

a∈X
P̂ (a)−n

∑
a∈X

P (a)

= nn−n = 1 �
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Size of T(P)

Theorem.
1

(n+ 1)M
2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Note. The exact size of |T (P )| is

|T (P )| =
(

n

nP (a1), nP (a2), . . . , nP (aM)

)

.

This value is hard to manipulate.

Proof. (upper bound)

If X1, X2, . . . , Xn are drawn i.i.d. from P , then

1 ≥ P
n(T (P )) =

∑

x∈T (P )

∏

a∈X

P (a)nP (a) = |T (P )|
∏

a∈X

2nP (a) logP (a)

= |T (P )|2n
∑

a∈X
P (a) log P (a) = |T (P )|2−nH(P )

.

Thus, |T (P )| ≤ 2nH(P )
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Size of T(P)

Proof. (lower bound)

1 =
∑

Q∈Pn

P n(T (Q))

≤
∑

Q∈Pn

max
Q

P n(T (Q))

=
∑

Q∈Pn

P n(T (P ))

≤ (n+ 1)MP n(T (P ))

= (n+ 1)M |T (P )|2−nH(P )
�



Peng-Hua Wang, May 21, 2012 Information Theory, Chap. 11 - p. 16/34

Probability of type class

Theorem. For any P ∈ Pn and any distribution Q, the probability of

the type class T (P ) under Qn satisfies

1

(n+ 1)M
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q).

Proof.

Qn(T (P ))) =
∑

(x ∈ T (P ))Qn(x)

=
∑

(x ∈ T (P ))2−n(H(Px)+D(Px||Q))

= |T (P )|2−n(H(Px)+D(Px||Q))

Since
1

(n+ 1)M
2nH(P ) ≤ |T (P )| ≤ 2nH(P ),

we have

1
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). �
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Summary

|Pn| ≤ (n+ 1)M

Qn(x) = 2−n(H(Px)+D(Px||Q))

1

n
log |T (P )| → H(P ) as n → ∞.

− 1

n
logQn(T (P )) → D(P ||Q) as n → ∞.

n If Xi ∼ Q, the probability of sequences with type P 6= Q

approaches 0 as n → ∞. ⇒ Typical sequences are T (Q).
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11.2 Law of Large Numbers
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Typical Sequences

n Given ǫ > 0, the typical T ǫ
Q for the distribution Qn is defined as

T ǫ
Q = {x : D(Px||Q) ≤ ǫ}

n The probability that x is nontypical is

1−Qn(T ǫ
Q) =

∑

P :D(P ||Q)>ǫ

Qn(T (P ))

≤
∑

P :D(P ||Q)>ǫ

2−nD(P ||Q)

≤
∑

P :D(P ||Q)>ǫ

2−nǫ

≤
∑

P∈Qn

2−nǫ = (n+ 1)M2−nǫ

= 2−n(ǫ−M
ln(n+1)

n
)
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Theorem

Theorem. Let X1, X2, . . . be i.i.d. ∼ P (x). Then

Pr(D(Px||P ) > ǫ) ≤ 2−n(ǫ−M
ln(n+1)

n
).
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11.3 Universal Source Coding



Peng-Hua Wang, May 21, 2012 Information Theory, Chap. 11 - p. 22/34

Introduction

n An iid source with a known distribution p(x) can be compressed to its

entropy H(X). by Huffman coding.

n Wrong code for incorrect distribution q(x), a penalty of D(p||q) bits

is incurred.

n Is there a universal code of rate R that is sufficient to compress every

iid source with entropy H(X) < R?
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Concept

n There are 2nH(P ) sequences of type P .

n There are no more than (n+ 1)|X | (polynomial) types.

n There are no more than (n+ 1)|X |2nH(P ) sequences to describe.

n If H(P ) < R there are no more than (n+ 1)|X |2nR sequences to

describe. Need nR bits as n → ∞.
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11.4 Large Deviation Theory
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Large Deviation Theory

n If Xi is i.i.d. Bernoulli with P (Xi = 1) = 1
3
, what is the probability

that
1
n

∑n

i=1Xi is near
1
3
? This is a small deviation.

u Deviation means “deviation from the expected outcome”.

u The probability is near 1.

n What is the probability that 1
n

∑n

i=1Xi is greater than 3
4
? This is a

large deviation.

u The probability is exponentially small.

u We might estimate the exponent using central limit theory, but this

is a poor approximation for more than a few standard deviation.

u We note that
1
n

∑n

i=1Xi =
3
4

is equivalent to Px =
(
1
4
, 3
4

)
.

Thus, the probability is approximated to

2−nD(Px||Q) = 2−nD(( 1
4
, 3
4)||(

1
3
, 2
3))
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Definition

n Let E be a subset of the set of probability mass functions. We write

(with a slight abuse of notation)

Qn(E) = Qn(E ∩ Pn) =
∑

x:Px∈E∩Pn

Qn(x)

u Why do we say this is a slight abuse of notation? The reason is

that Qn(·) in its original meaning represents the probability of a

set of sequences. But now we borrow this notion to represent a set

of probability mass functions.

u For example, let |X | = 2 and E1 be the probability mass

functions with mean = −1. Then E1 = ∅.

u For example, let |X | = 2 and E2 be the probability mass

functions with mean =
√
2/2. Then E2 ∩ Pn = ∅. (why?)
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Definition

n If E contains a relative entropy neighborhood of Q, then by the weak

law of large numbers Qn(E) → 1. Specifically, if Px ∈ E, then

Qn(E) ≥ Qn(T (Px)) = P (D(Px||Q) < ǫ)

≥ 1− 2−n(ǫ−|X |
ln(n+1)

n
) → 1

n Otherwise, Qn(E) → 0 exponential fast. We will use the method of

types to calculate the exponent (rate function.)



Peng-Hua Wang, May 21, 2012 Information Theory, Chap. 11 - p. 28/34

Example

By observation we find that the sample average of g(X) is greater than

or equal to α. This event is equivalent to the event PX ∈ E ∩ Pn,

where

E =

{

P :
∑

a∈X

g(a)P (a) ≥ α

}

.

Because

1

n

n∑

i=1

g(xi) ≥ α ⇔
∑

a∈X

PX(a)g(a) ≥ α ⇔ PX ∈ E ∩ Pn

Thus,

Pr

(

1

n

n∑

i=1

g(Xi) ≥ α

)

= Qn(E ∩ Pn) = Qn(E)
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Sanov’s Theorem

Theorem. Let X1, X2, . . . Xn be iid ∼ Q(x). Let E ⊆ P be a set of

probability distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n+ 1)|X |2−nD(P ∗||Q)

where

P ∗ = argminP∈E D(P ||Q)

is the distribution in E that is closet to Q in relative entropy.

If, in addition,E ∩ Pn 6= ∅ for all n ≥ n0 for some n0, then

− 1

n
logQn(E) → D(P ∗||Q).
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Proof of Upper Bound

Qn(E) =
∑

P∈E∩Pn

Qn(T (P ))

≤
∑

P∈E∩Pn

2−nD(P ||Q)

≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P ||Q)

≤
∑

P∈E∩Pn

max
P∈E

2−nD(P ||Q)

=
∑

P∈E∩Pn

2−nminP∈E D(P ||Q)

=
∑

P∈E∩Pn

2−nD(P ∗||Q)

≤ (n+ 1)|X |2−nD(P ∗||Q)
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Proof of Lower Bound

Since E ∩ Pn 6= ∅ for all n ≥ n0, we can find a sequence of

Pn ∈ E ∩ Pn such that D(Pn||Q) → D(P ∗||Q)), and

Qn(E) =
∑

P∈E∩Pn

Qn(T (P ))

≥ Qn(T (Pn))

≥ 1

(n+ 1)|X |
2−nD(Pn||Q). �

Accordingly, D(P ∗||Q) is the large deviation rate function.
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Example 1

Suppose that we toss a fair die n times, what is the probability that the

average of the throws is greater than or equal to 4 ?

From Sanov’s theorem, the large deviation rate function is D(P ∗||Q)

where P ∗ minimizes D(P ||Q) over all distribution P that satisfy

6∑

i=1

ipi ≥ 4,
6∑

i=1

pi = 1

By Lagrange multipliers, we construct the cost function

J = D(P ||Q) + λ
6∑

i=1

ipi + µ
6∑

i=1

pi

=

6∑

i=1

pi ln
pi
qi

+ λ

6∑

i=1

pi + µ

6∑

i=1

pi
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Example 1

Let

∂J

∂pi
= 0 ⇒ ln(6pi) + 1 + iλ+ µ = 0 ⇒ pi =

e−1−µ

6
e−iλ.

Substituting them for the constraints,

6∑

i=1

ipi =
e−1−µ

6

6∑

i=1

ie−iλ = 4

6∑

i=1

pi =
e−1−µ

6

6∑

i=1

e−iλ = 1

We can solve numerically e−λ = 1.190804264. And

P ∗ = (0.1031, 0.1227, 0.1461, 0.1740, 0.2072, 0.2468).
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Example 1

The probability that the average of 10000 throws is grater than or equal

to 4 is about

2−nD(P ∗||Q) ≈ 2−624
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