Calculus of Several Variables

3

 Functions of Several Variables
 Partial Derivatives
« Maxima and Minima of Function of Several Variables
e The Method of Least Squares
 Constrained Maxima and Minima and
the Method of Lagrange Multipliers

e Double Integrals
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8.1 Functions of Two Variables

A real-valued function of two variables, f,
consists of

1. A set A of ordered pairs of real numbers
(X, y) called the domain of the function.

2. A rule that associates with each ordered
pair in the domain of f one and only one real
number, denoted by z = (X, V).

2012/5/27
Page 536



EXAMPLE 1  Let fhe the function defined by
foy) =x+ay+y +2
Compute f(0, 0, f(1, 2), and f(2, 1),

Solution We have
F0.00=0+(0)N0) +0*+2=2

fL)=1+ 1 +2+2-9
fAN =2+ +17+2=7 .

2012/5/27
Page 536



{(a) Domain of g (b) Domain of A

FIGURE 1
EXAMPLE 2 Find the domain of each of the following functions.
2
a. f(x,y) = x>+ y? b. g(x,y) Y=y c. hix,y) = V1 —x2

Solution

a. f(x, y) is defined for all real values of x and y, so the domain of the function f

is the set of all points (x, y) in the xy-plane.

b. g(x, y) is defined for all x + v, so the domain of the function g is the set of all

points in the xy-plane except those lying on the line y = x (Figure 1a).

¢. We require that 1 — x* — y? = 0 or x* + y* = 1, which is just the set of all
points (x, ¥) lying on and inside the circle of radius 1 with center at the origin

(Figure 1b).

_yﬁ
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Ex. Let f be the function defined by
f(X,y)=3xy—2+y°.
Find f(0,3) and f (2,-1).

f(0,3)=3(0)" (3)—2+(3)’
= 25

f(2,-1) =3(2)" (1) - 2+(-1)
— 15

3
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Ex. Find the domain of each function
a. f(x,y)=3x-2y"
Since f (X, y) Is defined for all real values of

x and y, the domain of f is the set of all
points (X, y) in the xy — plane.

X
2X+Yy—3

g(x, y) is defined as long as 2x + y — 3 is not O.
So the domain is the set of all points (X, y) in the
Xy — plane except those on the liney = - 2x + 3.

0. g(X,y) =
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@\ | APPLIED EXAMPLE 3 Revenue Functions Acrosonic manufactures a

£ bookshelf loudspeaker system that may be bought fully assembled or in a Kit.
The demand equations that relale the unit prices, p and ¢, 10 the quanttes
demanded weckly, x and v, of the assembled and kit versions of the loudspeaker
systems are given by

1 1 1 3
=300 ——x ——y d =240 — —x — =
P 47 gY M4 8" 87
a. What is the weekly total revenue function R(x, v)?

b. What is the domain of the function R?

Solution

a. The weekly revenue realizable from the sale of x units of the assembled speak-
er systems at p dollars per unit is given by xp dollars, Similarly, the weekly
revenue realizable from the sale of v units of the kits at g dollars per unit is
given by yvg dollars. Therefore, the weekly total revenue function R is given by

Rix,y) =xp + g

1 1 1 3
= — —x — =y | + — —x — =
x(Z{}U 2> 3'},) y(?f-l{} g~ 8}?)

1, 1
=X %yz —gwt 300x + 240y
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240 — zx —3y=0

\
1006\ m\'x FIGURE 2

The domain of R(x, v)

D

b. To find the domain of the function R, let’s observe that the quantities x, y, p,
and g must be nonnegative. This observation leads to the following system of
linear inequaliies:

1 1

——Xx ——yp=
300 2* " g” 0
1 3

240 — —x — Dy =
0 8;'r: 8_}? 0
x=0

y=0

The domain of the function R is sketched in Figure 2. i
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i APPLIED EXAMPLE 4 Home Mortgage Payments The monthly pay-
”“Jb' ment that amortizes a loan of A dollars in ¢ years when the interest rate is r
per year is given by
Ar
12[1 -1+ ) IEI]
Find the monthly payment for a home mortgage of $270,000 to be amortized over
30 years when the interest rate is 10% per year.

P=fld,rt)=

Solution Letting A = 270,000, r = (.1, and {f = 30, we find the required month-
ly payment to be

270,000{0.1)
12[1 = (1 + 5)7%%
= 2369.44
or approximately $2369.44, u

P = £(270,000, 0.1, 30) =

ica: s HE R (13 555 : [
Lo Amortise: i X IR(f75%); Mortgage:£E4f
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Graphs of Functions of Two Variables

Three-dimensional coordinate system: (X, Yy, 2)

Ex. Plot (2,5, 4)
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x2+y2)

(
\/xz +y°

Sin

V4

The graph of
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y—X°

The graph of Z
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L evel Curves

o f (X, y) Is a function of two variables.

e |If ¢ IS some value of the function f, a trace of
the graph of z = f (X, y) = c projected In the xy-
plane is called a level curve.

e A contour map (ﬁﬁ@zq«a') IS created by
drawing several values of c.
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Ex. Sketch the level curves for the function
f(x,y)=y—x> correspondingtoz=-1, 0, 1, 2.

We have the family of curves
y = x°+C
1y

O O OO0
o N

I
[N
>

f
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EXAMPLE 5 Sketch a contour map for the function f(x, y) = x* + y*.

Solution The level curves are the graphs of the equation x* + y* — ¢ for non-
negative numbers ¢. Taking ¢ — 0, 1, 4,9, and 16, for example, we obtain

c= 0 +yr=0
c= Lxt+y=1
c= 4axtiyl=4=2
c= 9xtry=9=3%
c=16x% 1yt =16 =4
The five level curves are concentric circles with center at the origin and radius

givenby r = 0, 1, 2, 3, and 4, respectively (Figure 9a), A sketch of the graph of
f(x, ) = x* + y*is included for your reference in Figure 9b. 5
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flo, ¥y =xt+y?
-

X
(8) Level curves of f(x, y) — 57 + y° (b) The graph of f{x, ) — x* + y°
FIGURE 9
2012/5/27
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F i
[ ¥ '

-

EXAMPLE 6 Sketch the level curves for the function f(x, ) = 2x% — vy
corresponding toz = —2, —1,0, 1, and 2.

Solution The level curves are the graphs of the equation 2x* — y = k or
y=2x? —kfork = —2, —1,0, 1, and 2. The required level curves are shown in
Figure 10. |

k=-2
‘ k=-1
'y k=0

FIGURE 10

Level curves for f(x, y) = 2x°

- ¥

20125127
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8.2 First Partial Derivatives of f (X, y).

f (x,y) Is a function of two variables. The first partial
derivative of f with respect to x at a point (X, y) IS

of iy fT(x+hy)—T(Xy)
OX h—0 h

provided the limit exists.

The first partial derivative with respect to y at (X, y) Is

ﬂ: lim f(x,y+k)—f(x,Vy)
ay k—0 k
provided the limit exists.
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Notes

 Figure 12: approach a point in the plane from
Infinitely many directions.

e Figure 13: The curve C is formed by the
Intersection of the plane y=b with the surface
z=f(X,y).

e Figure 14: The curve C is formed by the
Intersection of the plane x=a with the surface
z=f(X,y).

« First partial derivative of f with respect to x at
(a,b)

— This derivative, obtaining by keeping the variable y fixed and
differentiating function f(x,b) w.r.t. and evaluating at x=a.
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Ex. Compute the first partial derivatives of the
function: f(x,y)=3x’y+xlIny

f,=6xy+Iny
f, =3x"+ x(ij
y

Ex. Given the functlon g(x, y), compute g,.
g(x,y)=e""
g, =(2xy +1)eXy2+y
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s, d
EXAMPLE 1 Find the partial derivatives T;: and a—f of the function
X iy

[l y) = x* — xy* + y°

What is the rate of change of the function fin the x-direction at the point (1, 2)?
What is the rate of change of the function fin the y-direction at the point (1, 2)?

d
Solution To compute ﬁ—“; think of the variable vy as a constant and differentiate
the resulting function of x with respect to x. Let’s write
FGr, v) = 22 — xv2 + 7

where the variable y to be treated as a constant is shown in color. Then,

af 5
ﬂ,r_zx Y

To compute P think of the variable x as being fixed—that is, as a constant—and

differentiate the resulting function of v with respect to y. In this case,

fGoy) =2 = xy? +
so that

af
—_ = - + 2
3y 2xy 3y

[A\VEwageyay|
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The rate of change of the function £ in the x-direction at the point (1, 2) is given

by

of
(,2)=—| =21)-2"=-2

f1.2) =5 | =20

That is, f decreases 2 units for each unit increase in the x-direction, y being kept

constant (y = 2). The rate of change of the function f in the y-direction at the
point (1, 2) is given by

d
A2 =--Jj = =2(1)(2) + 3(2)* =8
dy (1,2)
That 15, f increases 8 unifs for each unit increase in the y-direction, x being kept
constant (x = 1). I |
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EXAMPLE 2 Compute the first partial derivatives of each function.

. A
.Ta:2+_j|;2

c. h(u,v) = ¥

a. flx,y) = b. g(s, ) = (8% — st + 2y

2

d. f(x, y) = In(x% + 2y9

Solution

d
a. To compute E%" think of the variable y as a constant. Thus,
X

_ XV
Ax. ) 2 + }.2

s0 that, upon using the quotient rule, we have

f (x* + y*p — x3{(2x) B x%y + 33 — 2x%

Ix {Iz + },2:}2 {xz + yz}z
_y(y? - x?)
(x2 + y?)?
e o I . .
upon simplification and factorization. T'o compute 3y think of the variable x
as a constant. Thus,
_
Sxy) x2 + 2

LYULZLIILT
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s0 that, upon using the quotient rule once again, we obtain
f  (x* +y%)x —x(2y)  x*+ xy* — 2xp?
3y (x? + y?)? (x* +»?)°

_x(x? —y?)

x4y

b. To compute dg/ds, we treat the variable f as if it were a constant. Thus,
gls, N = (87 — st + t%)°
Using the general power rule, we find
98 _ 5% — st + 1D+ (25 — 1)
ds
= 5(2s — D(s* — st + &)
To compute dg/df, we treat the variable s as if it were a constant. Thus,
gls, t) = (5% — st + £2)°
og

i 5(s% — st + 2y (—s + 2¢)

= 5(2f — s)}(s* — st + £2)

2012/5/27
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¢. To compute dh/du, think of the variable v as a constant. Thus,
h(u, v) = e

Using the chain rule for exponential functions, we have

:—k = e* ¥ .2y
.4
= 2ue* ™Y
Next, we treat the variable u as if it were a constant,
h(u, v) = &< "
and we obtain
dh .
E = ¥ ¥, (—21?}
= —2Jye* Y

d. To compute Jdffdx, think of the variable y as a constant. Thus,
flx, ») = In@x? + 2y?)

so that the chain rule for logarithmic functions gives
af 2x
x  x% + 232

Next, treating the variable x as if it were a constant, we find

Sl y) = In(x* + 2py%)

9 _ 4y
En’_y x4 2y 2
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EXAMPLE 3 Compute the first partial derivatives of the function

w=fx,y,z2) =xyz — x** + xlny

Solution Here we have a function of three variables, x, v, and z, and we are
required to compute

af  af df
ox’ &y oz
To compuie f,, we think of the other two variables, v and z, as fixed, and we dif-
ferentiate the resulting function of x with respect to x, thereby obtamnmng
fi=yz— e+ Iny

To compute £, we think of the other two variables, x and z, as constants, and we
differentiate the resulting function of vy with respect to yv. We then obtain
X
f,=xz  xze™ + —
’ y

Finally, to compute f., we treat the variables x and v as constants and differenti-
ate the function f with respect (o z, obtaining

2= xy — xve’* a
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The Cobb-Douglas Production Function

f(x,y)=ax’y"™

e a and b are positive constants with 0 < b < 1.
* X stands for the money spent on labor.

« y stands for the cost of capital equipment.

f. 1s the marginal productivity of labor.
f, 1s the marginal productivity of capital.

2012/5/27
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Ex. A certain production function is given by
f (X, y) — 28X1/4y3/4
units, when x units of labor and y units of capital

are used. Find the marginal productivity of
capital when labor = 81 units and capital = 256

units.

1/4
f, =2Ix"*y ™" = Zl[éj
y

1/4
=21 81 =21 3 =15.75
256 4

So 15.75 units per unit increase In capital expenditure.
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APPLIED EXAMPLE 4 Marginal Productivity A certain country’s
production in the early years following World War II is described by the
function
f(.r-, }’) — 3{11,2!3 },113

units, when x units of labor and y units of capital were used.

a. Compute f, and f,.

b. What is the marginal productivity of labor and the marginal productivity of
capital when the amounts expended on labor and capital are 125 units and 27
units, respectively”?

¢. Should the government have encouraged capital investment rather than
increasing expenditure on labor (o increase the country’s productivity?

Solution
a f — 30_% -1, 1/3 _ 20 E "
* fr 3 X y X

=0 Ly o)
Y 3 Y

2012/5/27
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b. The required marginal productivity of labor 1s given by

- 2_? 1/3 - E
£.(125,27) = 2{}( 125) - 2{}(5)

or 12 units per unit increase in labor expenditure (capital expenditure is held
constant at 27 units). The required marginal productivity of capital is given by

| 125\ 25
£,(125,27) m(g) m(?)

or 273 units per unit increase in capital expenditure (labor outlay is held con-
stant at 125 units).

¢. From the results of part (b), we see that a unit increase in capital expenditure
resulted in a much faster increase in productivity than a unit increase in labor
expenditure would have. Therefore, the government should have encouraged
increased spending on capital rather than on labor during the early years of
reconstruction. u

2012/5/27
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Substitute and complementary
commodities

e Two commodities are substitute
(competitive) commodities If
— a decrease In the demand for one results In

an increase in the demand for the other, such
as coffee vs. tea.

 Two commodities are complementary
commodities If

— a decrease In the demand for one results in a
decrease In the demand for the other, such as
automobiles vs. tires.
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Substitute and Complementary Commodities

Two commodities A and B are substitute commodities

if
ﬂ> 0 and 8g

oq op

>0

Two commodities A and B are complementary
commodities If

ﬂ<O and 69

aq 5P
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APPLIED EXAMPLE 5 Substitute and Complementary Commodi-
ties Suppose that the daily demand for butter is given by

3q
x=flp,q) = I+,

and the daily demand for margarine 1s given by

2p

_— . —_ :}O, :}O
y=2g(p,q) L+ Vo (p g >0)

where p and g denote the prices per pound (in dollars) of butter and margarine,
respectively, and x and y are measured 1n millions of pounds. Determine whether

these two commodities are substitute, complementary, or neither.

Solution We compute

af 3 and dg 2
0g 1 +p2 op 1 + \/c}
Since
d d
—f >0 and % >0
dq dp

for all values of p > () and g > 0, we conclude that butter and margarine are sub-
stitute commodities. b |



Second-Order Partial Derivatives

Ex. Compute the second-order partial derivatives
of the function: f(x,y)=x°y*+x>—xIny

f =2xy’+5x*~Iny

First
i X
partials fy —3x%y? -2
y
f —2y* 1200 f, =6Xy+—
Second y
partials 1 1
fy =6xy° —= f o =6xy° —=
y y

2012/5/27
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. .

i

EXAMPLE

Solution

Therefore,

6“ Find the second-order partial derivatives of the function

Ffix, ¥y = x? — 3x%y + 3xy? + 2

The first partial derivatives of f are

I

5

Hx

3
dy

i(x?' — 3x%* + 3xy® + %)
3x? — 6xy + 3y°
d

—_— 3 _ 2 4 2_|_ 2
oy T T 3y 30 4y

—3x? + 6xp + 2y

() = == (3x2 — 6xp + 3y?)
* ax

— 6y = 6(x — ¥)

d
(fe) = 5(3:{3 — 6xy + 337}

—6x + 6y = 6(y — x)

9
dx

() = i(—?}xz + Oxy + 2y}

—6x + 6y = 6(y — x})

9
dy
Hx

d
() = 5(—?;:2 + 6xy + 2y}

+ 2




Solution We have

EXAMPLE 7 Find the second-order partial derivatives of the function

fx, y) = ‘91}'2

2012/5/27
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SO the reqmred semnd-nrder partial dmvauves nf fare

:—(f)— (J’E’“"")
—ye

:_U)_ [J’E"*'")
—Zye"-"’+21y3e”‘!

= Zye":"'z[l + ij)

d d 2
T — — — ';:':-'lI

fre= () = <= (27

= 2pe” + 2xple™’
= 29e9(1 + xp?)

d o 2
_ 9 _ Y Xy

() =5 (2e”)
= 2xe™ + (Z:c_y*)(2..1{_}»*).&3:":-"’2
= 2xe” (1 + 2xy7) E
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8.3 Maxima and minima of functions of
several variables

Let f be a function defined on a region R containing
(a, b).

f (a, b) is a relative maximum of f if f(x,y)< f(a,b)
for all (x, y) sufficiently close to (a, b).

f (a, b) is arelative minimum of f if f(x,y)= f(a,b)
for all (X, y) sufficiently close to (a, b).

*If the inequalities hold for all (x, y) in the domain of
f, then the points are absolute extrema.

2012/5/27
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Notes

* Figure 16 (p559)

* Figure 17 (560)

e Figure 18 (p561): Saddle point (Eﬁi‘f%@
* Figure 19 (p561)

e \WWhat are conditions required for the
relative extrema?
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Critical point of f

« A critical point of f is a point (a,b) in the domain
of f such that both f, =0, and f =0 atthe

point (a,b) or at least one of the partial
derivatives does not exist. .
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Determining Relative Extrema

1. Find all the critical points by solving the system
f.=0, and f =0

2. The 2" Derivative Test: Compute
D(x,y) = f, f,—fq
D(a,b) | f,(a,b) | Interpretation

+ + Relative min. at (a, b)

+ — Relative max. at (a, b)

— Neither max. nor min. at (a, b)
Test Is inconclusive

2012/597
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Ex. Determine the relative extrema of the function
f(X,y)=2x—x"—V°

So the only critical

fi=2-2x=0 f,=-2y=0 | G tis (L 0)

Sof(1,0) =1 s a relative maximum

2012/5/27



The graph of z=2x—x"-V’
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EXAMPLE 1 Find the relative extrema of the function
flr,y) =x*+y

Solution We have
=%
=2

To find the critical point(s) of f, we set f; = 0 and f; = 0 and solve the resulting
system of simultaneous equations

2x=10
2y=90
> obtaining x = 0, y = 0, or (0, 0), as the sole critical point of f. Next, we apply the
second derivative test to determine the nature of the critical point (0, 0). We com-
pute
* fxx=2 ﬁfy=0 f:y:,-=2
FIGURE 20 and

The graph of f(x, y¥) = x* + y*
DY) =fufw —f6 =2 -0=4

In particular, D(0, 0) = 4. Since D(0, 0) > 0 and f,.(0, 0) = 2 > 0, we conclude
that f(x, v) has a relative minimum at the point (0, 0). The relative minimum
value, 0, also happens to be the absolute minimum of f, The graph of the function
£, shown in Figure 20, confirms these results. L
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EXAMPLE 2 Find the relative extrema of the function

f,y) =3 —dxy +4y> —dx + 8y + 4

Solution We have
fi=6x—4y—4
fi=—4x+8y+38

To find the critical points of f, we set f, = 0 and f, = 0 and solve the resulting
system of simultaneous equations

6x—dy= 4
—4x + 8y = -8

Multiplying the first equation by 2 and the second equation by 3, we obtain the
equivalent system

[2x—8y= 8§
~12x + 24y = =24

Page
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Adding the two equations gives 16y = =16, or y = —1. We substitute this value
for y into either equation in the system to get x = 0. Thus, the only critical
point of f1s the pont (0, —1). Next, we apply the second derivative test to

~ determine whether the point (0, —1) gives rise to a relative extremum of f. We
| compute

fxr =6 f;:-,; = —4 fvy =8
and
D, Y) = fufyy — [3 = 6)®) — (-4 = 22

Since D(0, =1) = 32 > (and /. (0, —1) = 6 > 0, we conclude that f(x, y) has a
relative minimum at the point (0, —1), The value of f(x, y) at the point (0, —1) i
given by

f0, 1) = 3(0)* — 40)(-1) + 4(-1)* - 4(0) + 8(-1) + 4 =0 ]
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EXAMPLE 3 Find the relative extrema of the function
fx,y) = 4y + x* — 12y* — 36y + 2

Solution To find the critical points of f, we set f, = 0 and f, = 0 simultaneously,
obtaining
f=2x=0
S =12y* — 24y — 36 = 0
The first equation implies that x = 0. The second equation implies that
y2—2y—3=0
(y+ Dy —3=0

—that 1s, y = —1 or 3. Therefore, there are two critical points of the function f—
namely, (0, —1) and (0, 3).

Next, we apply the second derivative test to determine the nature of each of
the two critical points. We compute

fae=2  fo=0 £y =24y — 24 =24y — 1)
Therefore,
D(x,y) = fufiw —Fo =48y — 1)
For the point (0, —1),
DO, —1)=48(—1 — 1) = —96 <0
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Since D(0, —1) < 0, we conclude that the point (0, — 1) gives a saddle point of f.
For the point (0, 3),

D0,3)=483-1)=9%>0

Since D(0, 3) > 0 and £, (0, 3) > O, we conclude that the function fhas a relative
minimum at the point (0, 3). Furthermore, since

£(0,3) = 40) + (0) - 1203 - 36(3) + 2
= —106

we see that the relative minimum value of fis —106, i

2012/5/27
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"2A" APPLIED EXAMPLE 4 Maximizing Profits The total weekly revenue
(in dollars) that Acrosonic realizes in producing and selling its bookshelf
loudspeaker systems 1s given by

1 3 |
R(x,y) = —4—.1:2 — Eyg —gwt 300x + 240y

where x denotes the number of fully assembled units and vy denotes the number of
kits produced and sold each week. The total weekly cost attributable to the pro-
duction of these loudspeakers is

C(x, y) = 180x + 140y + 5000

dollars, where x and v have the same meaning as before. Determine how many
assembled units and how many kits Acrosonic should produce per week to max-
imize its profit.

Solution The contribution to Acrosonic’s weekly profit stemming from the pro-
duction and sale of the bookshelf loudspeaker systems is given by

Plx,y) = R(x,y) — Clx,y)

1 1
= (—Ex' — %yl — 4—xy + 300x + 24{}}*) — (180x + 140y + 5000)
1 3

1
= —x2 — =2 — —xy + 1 —
41 2 b 4.7:_]; 120x + 100y — 5000
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To find the relative maximum of the profit function P(x, y), we first locate the
critical point(s) of P. Setting P, (x, y) and P, (x, ¥} equal to zero, we obtain

1 1

P=—x——y+ 120 =
, 5 X T2V 0=0
P, = S + 100 =10
v TgY gt
Solving the first of these equations for y yields
y = —2x + 480

which, upon substitution into the second equation, yields

—f—l(—Zx + 480) — i;-: + 100 = 0
6x — 1440 —x + 400 = 0
x =208
We substitute this value of x into the equation y = —2x + 480 to get
y=064

LIULLTIIIAlr
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Therefore, the function P has the sole critical point (208, 64). To show that the
point (208, 64} is a solution to our problem, we use the second derivative test. We
compute

So,

v = (3)(-5) - () -5 v

In particular, D(208, 64) = 5/16 = 0,

Since D{(208, 64) > 0 and P,..(208, 64) < (, the point (208, 64) yields a rel-
ative maximum of P. This relative maximum is also the absolute maximumn of P.
We conclude that Acrosonic can maximize its weekly profit by manufacturing
208 assembled units and 64 kits of their bookshelf loudspeaker systems. The
maximum weekly profit realizable from the production and sale of these loud-
speaker systems is given by

P(208, 64) = —%(208]3 - %(64)2 - %(2{}8](64)
+ 120(208) + 100(64) — 5000
— 10,680

or $10,680. I
2012/5127
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"X APPLIED EXAMPLE 5 Locating a Television Relay Station Site A

television relay station will serve towns A, B, and C, whose relative locations

are shown in Figure 21. Determine a site for the location of the station if the sum
of the squares of the distances from each town to the site 1 minimized.

4 y (miles)
40+

20+ A(30,20)
B(-20,10)

] [ o P(x,y)
20 20
T C(10, -10)

» ¥ (miles)

=20 T

FIGURE 21
Locating a site for a television relay
station
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Solution Suppose the required site is located at the point P(x, v). With the aid
of the distance formula, we find that the square of the distance from town A to the
site 18
(x — 30)* + (y — 20)°
The respective distances from towns B and C to the site are found in a similar
manncr, so the sum of the squares of the distances from ¢ach town to the site is
given by
f ) = (x — 300 + (y — 200* + (x + 200
+ (v — 100 + (x — 10)* + (y + 10)?

To find the relative minimum of f(x, v}, we first find the critical point(s) of f.

Using the chain rule to find f,.(x, ¥) and £, (x, y) and setting cach cqual to zcro, we
obtain

HF72x 30+ 2x+ 200+ 2Hx — 10y = 6x — 40 =0
=200 200+ 2(y — 1) + 2y + 10) =6y —40 =0

from which we deduce that (3, 2) is the sole critical point of £, Since

we have

D(x,y) = faty — 3 = (6)(6) — 0 =36

Since D(E, ) > 0 and £.(3, 3) > 0, we conclude that the point (3, §) yields

. .. - - . 2
a relative minimum of f Thus, the required site has coordinates x = '3—'3'

andy = 4. 1
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8.4 The Method of Least Squares

» The method of least squares (LS) is used to determine a
straight line that best fits a set of data points when the
points are scattered about a straight line.

 Functional relationship vs. Statistical relationship

least squares
line
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Notes

o Statistical relationships are more common
than the functional relationships in practice.

e LS method is quite useful for finding the
approximate relationship.

e Figures 22-23 (p570).

» Least-squares line or regression line,
obtained from the LS method.
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The Method of Least Squares

Given the following n data points:
R (X Y1) B (%0 ¥o)ses B (X0 Vi)

The least-squares (regression) line for the data
IS given by y = mx + b, where m and b satisfy

SN

2 2 2
X, + X +...+xn)m+(x1+x2+...+xn)b=x1y1+x2y2+...+xnyn

and (X +X +..+X, )m+nb=y, + Yy, +..+Y,

simultaneously. The above two equations are called the
normal equations.

2012/5/27
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Ex. Find the equation of the least-squares line for
the data

2012/5/27

R&2) PF(2,3) R(37)
/(xf + X5 +x32)m+(xl+X2 + X )b =Y, + X, Y, + XY

(XX )mEnb =y +y, +Y,

[ (1+4+9)m + (1+2+3)b =2 + 6 + 21
(1+2+3)m+3b=2+3+7

14m + 6b = 29 m=25b=-1

6m + 3b =12
y=2.5Xx-1




Ex. The following date give the percent of people
over age 65 who have high school diplomas.

Year X 0 6 11 16 22 26

Percent with diplomas
y 19 25 30 35 44 48

Here, X = 0 corresponds to the beginning of the year 1959.

1. Find an equation of the least-square line for the given data.
2. Assuming that this trend continues, what percent of people

over age 65 will have high school diplomas at the beginning
of the year 2005.
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Solution

1. We need to find the equation of least-squares for
the given data.

-

nb+(x1 +...+x6)m Y, +.t Y

L(x1 +...+x6)b+(x12 +...+x62)m = XY, FotX Ve

— m=~1.13 and b ~18.23

1573m+81b =3256
81Im+ 6b=201

Therefore, the required least-square line has the equation:

y=1.13x+18.23
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Solution (cont.)

2. The percent of people over the age of 65
who will have high school diplomas at the
beginning of the year 2005 Is given by

y = f (46) :1.13(46) +18.23=70.21
or approximately 70.21%.
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EXAMPLE 1 Find an equation of the least-squares line for the data
Pl(ly l):- PI(Z& 3}: P3(31 4): 'P4(4: 3)! Pﬁ(ﬁ'!' ﬁ}

Solution Here, we have n = 5 and

x; = 1 Xa = 2 X3 — 3 X1 — 4 Xs — 5

=1 y»=3 y=4 y=3 ¥»=06
so Equation (4) becomes
(1+4+9+16+25m+ (1 +2+3+4+35=1+6+12+ 12 + 30

or
55m + 15b — 61 (6)
and (5) becomes
(1 +2+3+44+5mt+5%=1+31+41+3 16
or
15m + 56 = 17 (7)
Solving Equation (7) for b gives
b= —3m+ 15—? (8)

ZULZISIZ T
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il TR

which, upon substitution mto (6), gives

lS(-Sm + %) + 55m — 61
—45m + 51 + 55m = 61

10m = 10
m =1
Substituting this value of m into (8) gives
17 2
b=-3+—=—=04
5 5

Therefore, the required equation of the least-squares line is

y=x+04

2012/5/27
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FIGURE 24

The scatter diagram and the least-
X squares liney = x + 0.4

1 3 5

The scatier diagram and the regression line are shown in Figure 24, ]
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A APPLIED EXAMPLE 2 Advertising Expense and a Firm’s Profit
;f-, The proprietor of Leisure Travel Service compiled the following data relat-

ing the firm’s annual profit to its annual advertising expenditure (both measured
in thousands of dollars).

Annual Advertising

Expenditure, x 12 14 17 21 26 30

Annual Profit, ¥ a0 70 a0 1{4) 100 120

a. Determine an equation of the least-squares line for these data.
b. Draw a scatter diagram and the least-squares line for these data.

¢. Use the result obtained in part (a) to predict Leisure Travel s annual profit if

the annual advertising budgel is $20,000.

Solution

a. The calculations required for obtaining the normal equations may be summa-
rized as follows:

x ¥ xt xy
12 60 144 720
14 F0 196 080
17 o0 289 1.530
21 100 441 2,100
26 100 676 2,600
30 120 900 3,600
Sum 120 540 2,640 11.530

The normal equations are
6h + 120m = 540 %)
1208 + 2646m 11,530 (10)
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0 20 30

FIGURE 25

X

The scatter diagram and the least-

squares line y = 2.97x + 30.6

Solving Equation (9) for b gives
b=-20m+ 9% (11)
which, upon substitution into Equation (10), pives
120(—20m + 90) + 2646m = 11,530
—2400m + 10,800 + 2646m = 11,530
246m = 730
m= 297
Substituting this value of m into Equation (11) gives
b=-20297) + 9% =306
Therefore, the required equation of the least-squares line is given by
y=fx)=297x + 306

b. The scatter diagram and the least-squares ling are shown in Figure 2.
¢. Leisure Travel's predicted annual profit corresponding to an annual budget of
$20,000 is given by
f(20) = 2.97(20) + 30.6
=90

or $90,000. i
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i APPLIED EXAMPLE 3 Maximizing Profit A market research study
conducted for Century Communications provided the following data based
on the projected monthly sales x (in thousands) of Century’s DVD version of a
box-office hit adventure movie with a proposed wholesale unit price of p dollars.

p 38 36 345 30 285
X 22 54 70 115 146

a. Find the demand equation if the demand curve is the least-squares line for
these data.

b. The total monthly cost function associated with producing and distributing the
DVD movies 18 given by

Cx) =4x+ 25

where x denotes the number of discs (in thousands) produced and sold and
C(x) 1s in thousands of dollars. Determine the unit wholesale price that will

maximize Century’s monthly profit.
2012/5/27
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Solution

a. The calculations required for obtaining the normal equations may be summa-

rized as follows:

x v Xt xp
2.2 38 4.84 83.6
54 36 290.16 194.4
7.0 34.5 49 241.5
11.5 30 132.25 345
14.6 28.5 213.16 416.1
Sum 40.7 167 428 41 1280.6

The normal equations are
5b + 40.7m = 167
40.7b + 428 41m = 1280.6
Solving this system of linear equations simultancously, we find that
= —().81 and b = 3994
Therefore, the required equation of the least-squares line is given by
p=fx)= 0.81lx + 39.99
which 1s the required demand equation, provided (0 = x = 49.37.

[V rage)yay
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b. The mtal revenue function in this case is given by
R(x) =xp = —0.81x% + 39.99x
and since the total cost function is
Cx) =4x + 25
we see that the profit function is
P(x) = —0.81x% + 39.99x — (dx + 25)
= —(0.81x% + 35.99x — 25

To find the absolute maximum of P(x) over the closed interval [0, 49.37], we
compute

P'(x) = —1.62x + 35.99

Since P'(x) = 0, we find x = 22.22 as the only critical point of P. Finally,
from the table

x 0 2222 49.37

P(x) —25 374,78 —222.47

we see that the optimal wholesale price is

p = —0.81(22.22) + 39.99 = 21.99
or $21.99 per disc. a
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8.5 Constrained Maxima and Minima
and Method of Lagrange Multipliers

Determining the relative extremum of a function f
(X, y) subject to the the independent variables x and
y satisfying one or more constraints, see Figure 26.

maximum

2012/5/27
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EXAMPLE 1 Find the relative minimum of the function
flr,y) =22 + y?
subject to the constraint g(x,¥y) = x+y—1=0,
Solution Solving the constraint equation for y explicitly in terms of x, we obtain

y = —x + 1. Substituting this value of y into the function f(x, y) = 2x* + y?
results in a function of x,

O =22+ (—x+ 1P =32—-2x+ 1

The function £ describes the curve C lying on the graph of f on which the con-
strained relative minimum of foccurs. To find this point, use the technique devel-
oped in Chapter 4 to determine the relative extrema of a function of one variable:

R'(x)=6x—2=23x—1)

Setting /'(x) = 0 gives x = £ as the sole critical point of the function A. Next, we
find

h'(x) =6
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and, 1n particular,

|
B -] =6>0
g

Therefore, by the second derivative test, the pointx = 3 gives rise to a relative min-
imum of h. Substitute this value of x into the constraint equation x +y — 1 =0to

get y = 3. Thus, the point (5, ) gives rise to the required constrained relative min-

imum of . Since
| 2 1)? (2)E
—_—— | = -1 +{=| =
f(3’3) 2(3) 3

the required constrained relative minimum value of fis § at the point (3, ). It may
be shown that% 15 1n fact a constrained absolute minimum value of f (Figure 27).

L | b2
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glovi=x+yv-1=0

> ¥
FIGURE 27
f has a constrained absolute minimum
X of £ at (1,2). u
2012/5/27
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The Method of Lagrange Multipliers

To find the relative extrema of the function f (X, y)
subject to the constraint g(x, y) = 0.

1. Form an auxiliary (Lagrange) function.
F(x,y,4)=T(X,y)+49(X,y)

2. Solve the system:
F =0, Fy =0, F,=0

3. Evaluate f at each of the points (X, y) found In

step 2. The largest is the max., smallest Is the
min.
2012/5/27
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Ex. Use the method of Lagrange multipliers to find
the constrained relative maximum of the function
f(x,y)=1-x*-y* subjectto x+y=2.

F(y,A)=1-x"—y* + A(x+y—-2)

\

- =—2X+4=0 1 1

=-2y+4A=0 X=§ﬂ,,y:§l
_/

4=

y

F has a constrained maximumatx =1, y=1.
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EXAMPLE 2 Using the method of Lagrange multipliers, find the relative mini-
mum of the function

e, y) = 2% + y*
subject to the constrant x + y = 1.

Solution Write the constraint equation x + y = 1 in the form glx, ¥) = x + ¥
— 1 = 0. Then, form the Lagrangian function

Fi, y, A) = flx, ) + Ag(x, ¥)
=2 +y* + AMx +y—1)

To find the critical point(s) of the function F, solve the system composed of the
equations

F.=4x + A =10

F,=2y+A=0

Fy=x+y—-1=0
Solving the first and second equations in this system for x and y in terms of A, we

obtain
1 1

x = —IJ{ and y = —5}&,
which, upon substitution into the third equation, yields
1 1 4
—E}I_—Eh—l—[} or .-"’L——E
Therefore, x = $andy = %, and (3, 3) affords a constrained minimum of the
function f, in agreement with the result obtained carlier. P 3

rage o




EXAMPLE 3 Use the method of Lagrange multipliers to find the minimum of
the function

fx,y,2) = 2y + 6yz + 8xz
subject to the constraint
xyz = 12,000

(Note: The existence of the minimum 1s suggested by the geometry of the prob-
lem.)

Solution Write the constraint equation xyz = 12,000 in the form g(x, v, 2) =
xyz — 12,000. Then, the Lagrangian function is
Flx, y, 2, A) =f(x, 3, 1) + Ag(x, ¥, 2)
= 2xy + 6yz + 8xz + A(xyz — 12,000)

To find the critical point(s) of the function F, we solve the system composed of
the equations

F,=2y+ 82+ Az =0

F,=2x+06z+ Az=0

F,=6y+8 + A&xy=20

Fy = xyz — 12,000 = 0

[AVEVAaEeyay|
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Solving the first three equations of the system for A in terms of x, y, and z, we
have

2y + 8

l:—y—z
vz

I%x + 6

A= z
Xz

+ 8

A= T8
xy

Equating the first two expressions for A leads to
2y + 8z  2x + 6z

¥z Xz
2xy + Bxz = 2xy + 6yz
3
X =7V

Next, equating the second and third expressions for A in the same system vields
2x + 6z 6y + 8x

xZ Xy
2xy + 6yz = 6yz + 8Bxz
1
=7y
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l Finally, substituting these values of x and z into the equation xyz — 12,000 = (,
the fourth equation of the first System of equations, we have

Gy)(y)(iy) - 12,000 = 0

. (12,00{;)(4)(4) o

y=4
The corresponding values of x and 7 are given by x =3(40) =30 and 7 =

3(40) = 10. Therefore, we see that the point (30, 40, 10) gives the constrained
minimum of f. The minimum value is

(30, 40, 10) = 2(30)(40) + 6(40)(10) + 8(30)(10) = 7200 [
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Section 8.1. The total weckly profit (in dollars) that Acrosonic realized in
producing and selling its bookshelf loudspeaker systems i1s given by the profit
function

W APPLIED EXAMPLE 4 Maximizing Profit Refer to Example 3,

Plx,y) = —i.rg — %yz — ;.1}- + 120x + 100y — 5000

where x denotes the number of fully assembled units and ¥ denotes the number of
kits produced and sold per week. Acrosonic’s management decides that produc-
tion of these loudspeaker systems should be restricied to a woial of exactly
230 units each week., Under this condition, how many fully assembled units and
how many kits should be produced each week to maximize Acrosonic’s weekly
profit?

Solution The problem is equivalent to the problem of maximizing the function

1 1
Plx,y) = _EIE — %yz — g + 120x + 100y — 5000

subject to the consitraint
gx. v =x+y—230=0
The Lagrangian function is

Flx,v, A) = P(x,y) + Ag(x, ¥)

1, 3 ., 1
= —— — = — F 120x + 1
4,:: By 4xy Ox 00y

— 5000 + A(x + ¥y — 230)
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To find the critical point{s) of F, solve the following system of equations:
1 1

F.= —x —y 1120+ A=
. 2}: 4y 0 0
F,= -2y — L4100+ 2a=0
y— T aY  4*

Solving the first equation of this system for A, we obtain

1 1
A Xt gy 120
which, upon substitution into the second equation, yvields
3 1 1 1
— S — + 100 + — + — — 120 =0
4 ¥ 4 ¥ 2 x 4 ’
1 1
— e _|_ —_— —_— =
5 b 2 x—20=10

Solving the last equation for v gives

1
= —x — 40
Y73
When we substitute this value of y into the third equation of the system, we have

x+%x—4ﬂ—23{}=ﬂ

x = 180

LULLIIIci
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The corresponding value of y is %(18[1) — 40, or 50. Thus, the required con-
strained relative maximum of P occurs at the point (180, 50). Again, we can show

that the point (180, 50) in fact yields a constrained absolute maximum for P.
Thus, Acrosonic’s profit 1s maximized by producing 180 assembled and 50 kit

versions of their bookshelf loudspeaker systems. The maximum weekly profit
realizable 1s given by

P(180,50) = —i(lﬂﬂ)" _ %(5{])1 _ %(130](50]

+120(180) + 100(50) ~ 5000
= 10,312.5

or $10,312.50. 1
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FIGURE 28
A rectangular-shaped pool will be built
in the elliptical-shaped poolside area.

' APPLIED EXAMPLE 5 Designing a Cruise-Ship Pool The operators
- of the Viking Princess, a luxury cruise liner, are contemplating the addition
~ of another swimming pool to the ship. The chief engineer has suggested that an
arca in the form of an ellipse located in the rear of the promenade deck would be
suitable for this purpose. This location would provide a poolside area with suffi-
cient space for passenger movement and placement of deck chairs (Figure 28). It
has been determined that the shape of the ellipse may be described by the equa-
tion x? + 4y? = 3600, where x and y are measured in feet. Viking’s operators
would like to know the dimensions of the rectangular pool with the largest possi-
ble area that would meet these requirements.

2012/5/27
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x? + 4y? = 3600

{x, ¥}

-
- il

o X

FIGURE 29

We want to find the largest rectangle
that can be inscribed in the ellipse
described by x* + 4y® = 3600.

Solution To solve this problem, we need to find the rectangle of largest area
that can be inscribed in the ellipse with equation x* + 4y? = 3600. Letting the
sides of the rectangle be 2x and 2y feet, we see that the area of the rectangle is
A = 4xy (Figure 29). Furthermore, the point (x, ¥} must be constrained to lie on
the ellipse so that it satisfies the equation x* + 4y? = 3600. Thus, the problem is
equivalent to the problem of maximizing the function

Mx, y) = 4xy
subject to the constraint g(x, ¥) = x% + 4y? — 3600 = 0. The Lagrangian func-
tion is
F(x, y, A) = fix, y) + Ag(x, ¥)
= 4xy + A(x? + 4y? — 3600)
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To find the critical point(s) of F, we solve the following system of equations;
F.=4y +2xx =0
F,=4x+ 8Ay =0
F,=x24+4y*—3600=0

Solving the first equation of this system for A, we obtain

2y
X

A=

which, upon substitution into the second equation, vields

2
dx + 8(—%)}1} =0 or x?—4*=0
—that is, x = =2y, Substituting these values of x into the third equation of the

system, we have
4y? + 4y* — 3600 = O

or, upon solving v = +450 = +15v/2. The comesponding values of x are
+30+/2. Because both x and vy must be nonnegative, we have x = 30V2 and
y = 15V2. Thus, the dimensions of the pool with maximum area are 302 feet
X 60V2 feet, or approximately 42 feet X 85 feet. ]
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APPLIED EXAMPLE 6 Cobb-Douglas Production Function Sup-
pose x units of labor and y units of capital are required to produce

flx, y) = 100x¥4y 14

units of a certain product (recall that this is a Cobb—Douglas production function).
If each unit of labor costs $200 and each unit of capital costs $300 and a total of
$60,000 is available for production, determine how many units of labor and how
many units of capital should be used in order to maximize production.

Solution The total cost of x units of labor at $200 per unit and y units of capi-
tal at $300 per unit is equal to 200x + 300y dollars. But $60,000 is budgeted for
production, so 200x + 300y = 60,000, which we rewrite as

glx, v) = 200x + 300y — 60,000 = 0
To maximize fix, ¥v) = 100x**y ' subject to the constraint g(x, ¥v) = 0, we form
the Lagrangian function
Flx, v, A) = flx, ¥y) + Aglx, ¥)
= 100x*y ¥ + A(200x + 300y — 60.000)

To find the critical point(s) of F, we solve the following system of equations:
F,=T5x""" 4+ 2000 =0
F, = 25x3 4™ 4+ 3004 =0
Fy,=200x + 300y — 60,000 =0
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Solving the first equation for A, we have
?SI_]H}'IH 3 (E)]H

A= ————=_=
X

200 8
which, when substituted into the second equation, yields

o) (D)D) -

174
x
Multiplying the last equation by (;) then gives

25(5) _MW_y
y] 8

= (%)) -2

Substituting this value of x into the third equation of the first system of equations,
we have

9
zuﬂ(i}:) + 300y — 60,000 = 0

from which we deduce that y = 50. Hence, x = 225. Thus, maximum production
is achieved when 225 units of labor and 50 units of capital are used. |
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EXAMPLE 1 Letz = f{x,y) = 2x* — xy. Find Az. Then use your result to find
the change in z if (x, ¥) changes from (1, 1) to (0.98, 1.03).

Solution Using (12), we obtain

Az = fix + Ax,y + Ay) — fix, y)
= [2(x + Ax)* — (x + Ax)(y + Ay)] — (2x* — xy)
= 2x% + 4xAx + 2(Ax)* — xp — xAy — yAx — AxAy — 2x* + xy
= (4x — y)Ax — xAy + 2(Ax)* — AxAy
Next, to find the increment in z if (x, y) changes from (1, 1) to (0.98, 1.03), we note

that Ax = 098 — 1 = —0.02 and Ay = 1.03 — 1 = 0.03. Therefore, using the
result obtained earlierwithx =1,y = 1, Ax = —0.02, and Ay = 0.03, we obtain

Az = [4(1) — 1](—=0.02) — (1)(0.03) + 2(—0.02)% — (—0.02)(0.03)
= —0.0886

You can verify the correctness of this result by calculating the quantity
. f10.98, 1.03) — f(1,1). B |
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EXAMPLE 2 Letz = 2x%y + y°.

a. Find the differential dz of z.

b. Find the approximate change in z when x changes fromx = 1 tox = 1.01 and
v changes fromy — 2 to v = 1.98.

¢. Find the actual change in z when x changes from x — 1 to x = 1.01 and y
changes from y = 2 to y = 1.98. Compare the result with that obtained in part

(b).

Solution
a. Let f(x, v) = 2x%y + y°. Then the required differential is
d
dz = a‘irdx + a;fdy = dxydx + (2x* + 3p?) dy
b. Here x = 1,y = 2,and dx = 1.01 — 1 = 0.0l and dy = 1.98 — 2 = —0.02,
Therefore,

Az = dz = 42001 + [2(1) + 3(DHN—0.02) = —020
c. The actual change in z is given by
Az = £(1.01, 1.98) — 7(1, 2)
= [2(1.01)3(1.98) + (1.98)°] — [Z(1D?(2) + (2)*]
= 11.801988 — 12
= —(.1980

We see that Az = dz, as expected. i |
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i APPLIED EXAMPLE 3 Approximating Changes 1in Revenue
JD The weekly total revenue of Acrosonic Company resulting from the produc-
tion and sales of x fully assembled bookshelf loudspeaker systems and vy kit
versions of the same loudspeaker system is

1 1
Rix, v) = _II- — %yl — Ixy + 300x + 240y

dollars. Determine the approximate change in Acrosonic’s weckly total revenue
when the level of production is increased from 200 assembled units and 60 kits
per week to 206 assembled units and 64 Kits per week.

Solution The approximate change in the weekly total revenue is given by
the total differential R at x = 200 and v = 60, dx = 206 — 200 = 6 and dy =
64 — 60 = 4; that is, by

aR R

dR = —dx + — dv
ox day

=200, p =860

dr=2=06,dy=4
- (6)

1 1
= ——x — — +3{}{})
( 2 a” 200, 80}
- (4)

3 1
} — —x 24{})
( a¥ 2 (200, 60)
— (—100 — 15 + 300)6 + (—45 — 50 + 240)4

= 1690

or $1690. -
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_ APPLIED EXAMPLE 4 Cobb-Douglas Production Function The

production for a certain country in the early years following World War 11 is
described by the function

f(.r, y) — 3{1x233y 173

uniis, when x units of labor and y units of capital were utilized. Find the approx-
imate change in output if the amount expended on labor had been decreased from
125 units 1o 123 units and the amount expended on capital had been increased
from 27 to 29 units. Is your result as expected given the result of Example 4c,
Section 8.27

Solution The approximate change in output is given by the total differential
of fatx = 125, v =27, dx = 123 — 125 = -2, and dv = 29 — 27 = 2; that is, by

df_a—f-ﬂit + ﬁ_jpdy x=125 y=27
ax ay dx=—2, dy=2
— zux—]f.'!y].l’.'i | . (_2) + ]uxl'"iy—y.'i- . (2)
(125, 27) (125, 27)

=zu(é—l)m{ 2) 10(%}5)%[21
)+ () -2

or 315 units. This result is fully compatible with the result of Example 4, where
the recommendation was (0 encourage increased spending on capital rather than

on labor. u
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APPLIED EXAMPLE 5 Error Analysis Find the maximum percentage
error in calculating the volume of a rectangular box if an error of at most 1%
1s made in measuring the length, width, and height of the box.

Solution Iet.x vy and z denoie the length, widith, and height, respectively, of
the rectangular box. Then the volume of the box 1s given by V = f(x, v, 2) — xvz
cubic units. Now suppose the true dimensions of the rectangular box are a, D, and
¢ units, respectively. Since the error committed in measuring the length, width,
and height of the box is at most 19, we have

|Ax| = |x — a| = 0.01a
|Ay| = |y — b| = 0.015
|Az| = |z — ¢| = 0.01¢

Therefore, the maximum error in calculating the volume of the box 1s

o o
av)~av) = | Lo+ Lap 1+ Yy,
d.x a a"' X=4a,r= E‘.. =

= |yvz dx + xzdv + xydz|

x=a y=bz=c

= |bcdx + acdy + abdz]|

= bc|dx| + ac|dv| + ab|dz|

= bhe(0.01a) + ac(0.018) + ab{0.01e)
= (0.03)abc
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Since the actual volume of the box 1§ ab¢ cubic units, we see that the maximum
percentage error in calculating its volume i3

i (0.03)abe
Ve ahe

={0.03

—that 15, approximately 3%. 1

2012/5/27
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8.7 Double Integral

The double integral of f (X, y) over the region R Is

denoted
j j f(x,y)dA

R

If f (X, y) IS nonnegative, then the integral
gives the volume of the solid bounded above
by z =f (X, y) and below by the plane region
R.

2012/5/27
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Evaluating a Double Integral Over a

Rectangular Region (x and y are not related)

Let R be definedby a<x<b and c<y<d

Then

2012/5/27

[[f(xy)da=]" [ [ fx y)dx} dy

V4
.

| / R

- Y
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Ex. Evaluate || f(x,y)dA, where f (x,y) =3x +4y
R

and R is the rectangle defined by
1<x<2and 2<y<4

g f(X,y)dA= EUlZ(BxZ +4y)dx} dy

5

dy = j24(7 +4y) dy

1—

E_(x3+4xy)

(7y+2y2);1

=60—-22=238
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EXAMPLE 1 Evaluate _[l;_[ﬁx,y) dA, where f(x, ¥) = x + 2y and R is the
rectangle defined by 1l =x=4d4and 1 =y = 2.

Solution Using Equation (15), we find

[[remas= [ [ @+ 2 a|a

¥
To compute

JT (x + 2y) dx

we treat y as if it were a constant (remember that dx reminds us that we are inte-

grating with respect to x). We obtain
4

x

4
1
J [.x:+2y}cfx=§x3+2xy
1

x=1

- |2a6) + 2| - |2y + 20y

15
5 i

Jjﬁxay}cﬂ . f (;—5+ ﬁy) dy = (12—53; + 3:,,3)

={15+12)—(12—5+3>=1

Thus,

2

ST




Evaluating a Double Integral Over a
Plane Region (X and y are related)

Suppose g,(x) and g,(x) are continuous on [a, b] and
R={(xy)9,(X) <y<g,(x);a<x<b}. Then

” f (X, y)dA:LTUgZ(X) f (X, y)dy}dx

9; (X)

Suppose h,(y) and h,(y) are continuous on [c, d] and
R={(x,y)Ih(y)<x<h,(y)c<y<d}. Then

jR [f(xy)da=|" [ 2, y)dx} dy

2012/5/27
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AYy A ¥
x=hf(y)  x=hyy)

¥=8,x)

y &
¥=g,lx) B

] L » T
a b
(a) (b)
2012/5/27
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Ex. Evaluate ”(X+ ZY)dA where R Is the region
R
bounded by y=x"and y=2-x".

JJ (x+2y)da = f_lliff?xz(x + 2y)dv}dx

2_x2 ]

:j_(Xeryz) d x

-1 x 2

=j_11(—2x3—4x2+2x+_4)dx
_(_1x4_4xs+ X+ 4xj
2 3

_Q_(—lsj_la
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A

gix)=D
It
} gx)=
1t R
(1

BER
FIGURE 37

R 15 the reqion bounded by g,(x) = x

and g{x) = Afor0 = x=2,

>\

EXAMPLE 2 Lvaluate L [ fix,y) dd given that(x, y) = x* + y*and Ris the
region bounded by the graphs of g,(x) = x and gy(x) =

Solution The region under consideration 1s shown in Figure 37, Using Equation

(16), we find

Hﬂx.y) 14 =

R

A0 ES &




4y

FIGURE 38
R is the region bounded by y = ¥* and

y =X

EXAMPLE 3 Evaluate j;j'f(:c,y} dd, where f(x, y) = x¢’ and R 1s the plane
region bounded by the graphs of y = x’andy = x.
Solution 'The region in question is shown in Figure 38, The pont of mtersec-

tion of the two curves is found by solving the equation x” = x, giving x = 0 and
x = 1. Using Equation (16), we find

Jrora[[[ora]e- =

R

|a
e
|

= .l(:cgl—xe’!}dx=rxeﬂir— J e dy

/ 0

and integrating the first integral on the nght-hand side by parts,

111-'

=[(x-1)e ~7e Il,

1 1\ 1
= ——[-1-=]==(3-
" ( ) =704

a
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1+
\ FIGURE 39

» X R is the region bounded by the y-axis,
x=0,y=4 and y = x°.

EXAMPLE 4 Evaluate

([ser as

R

where R is the plane region bounded by the y-axis, x = 0, the horizontal line
y = 4, and the graph of y = x2.

Solution The region R is shown in Figure 39. The point of intersection of the
line y = 4 and the graph of y = x? is found by solving the equation x* = 4, giv-
ing x = 2 and the required point (2, 4). Using Equation (16) with vy = g,(x) = x?Z
and y = go(x) = 4 leads to

[Jreraa= [[[ oo Je

R X

Page 6




Now evaluation of the ntegral

4 4
J xe”zdy=.rJ e”zdy

. .

calls for finding the antiderivative of the integrand ¢ in terms of elementary
functions, a task that, as was pointed out in Section 7.3, cannot be done. Let’s
begin afresh and attempt to make use of Equation (17).

Since the equation y = x? is equivalent to the equation x = V'y, which clearly
expresses x as a function of y, we may write, withx = A,(y) = 0and hy(y) = V,

o[ [

B
4
| I 1 1
— — s — = —(sl¢ _ L
L2 dy 7° 4(3 1)

4

0
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8.8 The VVolume of a Solid under a Surface

et R be the region in the xy-plane and let f be
continuous and nonnegative on R. Then, the
volume of the solid bounded above by the surface

z =1 (x,y) and below by R is given by

2012/5/27

V :”f(x,y) dA
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|l I
= O ey

~N O

1—x?

[y dy

Example

Find the volume of the solid bounded above by the
plane z = f (x, y) =y and below by the plane region R

defined by y =+v1-x* (0<x<1).

V :jij(x,y)dA :jRjydA

d x

|




EXAMPLE 1 Find the volume of the solid bounded above by the plane z =
f(x, ¥) = y and below by the plane region R defined by y = V1 — x?2 (0 =x = 1).

Solution The region R is sketched in Figure 40. Observe that f(x, v) = vy = 0 for
(x, y) € R. Therefore, the required volume is given by

(fraam [[[ o) (2]

0
1
— 1 2 _1 1 5
_JC_Z[I x}dx—z(x 3x>

W1 —x?
] x

L

! 1
a 3

or 3 cubic unit. The solid is shown in Figure 41. Note that it is not necessary to
make a sketch of the solid in order to compute its volume.
&Z

z=fx. =y

-y

FIGURE 41
1—x2 The solid bounded above by the plane
Zz = y and below by the plane region

x defined by v = V1 — x> (0 = x = 1) |

2012/5/27
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4y

_10 ' ' 10

FIGURE 43
The rectangular region R represents a
certain district of a city.

LIULLTIIIAlr

APPLIED EXAMPLE 2 Population Density 'The population density of
a certain city is described by the function

f(x, y) = 10,000 ~02}l-0-1b1

where the origin (0, 0) gives the location of the city hall. What is the population
inside the rectangular area described by

R={x,y]|-10=x=10,-5=y=<35}

if x and v are in miles? (See Figure 43.)

Solution By symmetry, it suffices to compute the population in the first quad-
rant. (Why?7) Then, upon observing that in this quadrant

f{.x, },) — 10,'[}[]0‘:? 0.2x—01y — 10,0003 0.1t€ 0.1y

we see that the population in R is given by

r1or

5 =
”ﬂx,y) d4d =4 J 10,000 %0 dy | dy
- -0 i

R 0

rlor
=4 —100,000¢ %%~V

s L

10
= 400,000(1 - e‘“'S)J e 0% dy
0

-
dx

0

= 2,000,000(1 — ¢ **)(1 — 7?)
or approximately 680,438 people. |
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Average Value of f (x,y) Over the
Region R

If f Is integrable over the plane region R, then its
average value over R Is given by

”f(x y)dA Hf(x y)dA

Area of R ”dA

2012/5/27
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Ex. Find the average value of f(x,y)=2x+y* over the
region bounded by y = x*, the x-axis, x=0 and x =1.

2

jol[joxz(zﬁ yz)dy}olx=jol £2xy+y§jx dx

0

1

° 2
:F o+ 5 x| Txdy L X7 _ 23
0 3 2 21 42

0

1 1
Since IO x“dx ==, the average value of f is

3
~ / 23142 _ 23
20125527 | Area of region 1/3 14




FIGURE 44
1 *X  The plane region R defined by
y=e" (0 =x=1)

EXAMPLE 3 Find the average value of the function f(x, v) = xy over the plane
recion defined by vy = e (0 =x = 1).

Solution The region A is shown in Figure 44. The arca of the region R is given

by
1 e* 1 e
[1] a]ae= ][]
0 0 0 0
1
= J- e’ dx
0
1
—— er
0
ZULZIJIZ |
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T i

square units. We would obtain the same result had we viewed the area of this
region as the area of the region under the curve ¥y = e* from x = 0 to x = 1. Next,
we compute

-1 x

”ﬂx,y) dA = j xydy] dx
R il 1]

rrl'.l
Jo L
r']_]

— — 2x
_. zxe dx

#]

1 1
=I.reh—§e .

1. 1 z) 1
(43 g /%

1
=g+ 1)

1
2x

Integrate by parts.

square units. Therefore, the required average value is given by

Uﬂx’ﬂ “ R GRR a
_”-d"i e — 1 8(e — 1)
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' APPLIED EXAMPLE 4 Population Density (Referto Example 2.) The
population density of a certain city (number of people per square mile) is
described by the function

fx, ¥) = 10,000e %201

where the origin gives the location of the city hall. What is the average popula-
tion density inside the rectangular area described by

R={(x,v|—-10=x=10; —5 =y =< 5}

where x and v are measured in miles?

Solution From the results of Example 2, we know that

f Sfx, ¥) d4 = 680,438
R

From Figure 40, we see that the area of the plane reclangular region R is (ZO)(10),
or 2({), squarc milcs. Therefore, the average population inside R is

([ e, ) as
680,438
= = —g0  — 3402.19
[[ s
R
or approximalely 3402 people per square mile. [

201215121
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