
IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 12, DECEMBER 2008 883

Low-Complexity ML Decoding for Convolutional Tail-Biting Codes
Hung-Ta Pai, Member, IEEE, Yunghsiang S. Han, Senior Member, IEEE, Ting-Yi Wu,

Po-Ning Chen, Senior Member, IEEE, and Shin-Lin Shieh

Abstract—Recently, a maximum-likelihood (ML) decoding al-
gorithm with two phases has been proposed for convolutional tail-
biting codes [1]. The first phase applies the Viterbi algorithm to
obtain the trellis information, and then the second phase employs
the algorithm A* to find the ML solution. In this work, we
improve the complexity of the algorithm A* by using a new
evaluation function. Simulations showed that the improved A*
algorithm has over 5 times less average decoding complexity in
the second phase when Eb/N0≥ 4 dB.

Index Terms—Viterbi algorithm, maximum-likelihood, tail-
biting codes, algorithm A*.

I. INTRODUCTION

CONVOLUTIONAL Tail-Biting Codes (CTBC) can over-
come the loss on the code rate, and induces less per-

formance degradation [2], [3]. In the trellis of CTBC, there
is a one-to-one correspondence between a codeword and a
path with the same initial and final state, which is called a
tail-biting path.1 If the number of initial states (equivalently,
final states) of the convolutional tail-biting code is Ns, the
trellis is composed of Ns subtrellises with the same initial and
final state. These subtrellises are called tail-biting subtrellises,
or simply subtrellises, and will be denoted by Ti for the ith
subtrellis.

Several suboptimal decoding algorithms for the CTBC
have been proposed [2], [4]. Among them, the wrap-around
Viterbi algorithm (WAVA) is the one with the least decoding
complexity [2].

A straightforward optimal decoding algorithm for the CTBC
codes is to perform the Viterbi algorithm on all of the tail-
biting subtrellises; however, such approach may be impractical
due to its high computational complexity. Recently, an ML
decoding algorithm of practical decoding complexity has been
proposed [1]. This scheme has two phases. In the first phase,
the Viterbi algorithm (VA) is applied to the trellis of the
convolutional tail-biting code to obtain the trellis information.
Based upon the trellis information, the algorithm A* is then
performed on all subtrellises in the second phase to yield the

Manuscript received December 27, 2007. The associate editor coordinating
the review of this letter and approving it for publication was R. Nabar. This
work was supported by the National Science Council, Taiwan, R.O.C., under
the project No. NSC 96-2628-E-305-001 and NSC 96-2221-E-305-003.

H.-T. Pai, Y. S. Han, and T.-Y. Wu are with the Graduate Institute
of Communication Engineering, National Taipei University (e-mail: {htpai,
yshan}@mail.tnpu.edu.tw, mavericktywu@gmail.com).

P.-N. Chen is with the Dept. of Communications Engineering, National
Chiao Tung University (e-mail: qponing@mail.nctu.edu.tw).

S.-L. Shieh is with Sunplus mMobile Inc., Hsinchu 300, Taiwan, R.O.C.,
and also the Dept. of Communications Engineering, National Chiao Tung
University (e-mail: shinlinshieh@yahoo.com.tw).

Digital Object Identifier 10.1109/LCOMM.2008.072181.
1Hence, “tail-biting paths” and “codewords” are interchangeably used in

this work.

ML decision. It has been shown that the decoding complexity
can be reduced from Ns VA trials to equivalently 1.3 VA trials
without sacrificing the optimality in performance.

In this work, an improved algorithm A* with a new
evaluation function is presented. Simulations showed that the
complexity in the second phase can be further reduced down
to 1/5 of the original scheme at medium-to-high signal to noise
ratio (SNR).

II. MAXIMUM-LIKELIHOOD DECODING OF THE CTBC
USING IMPROVED ALGORITHM A*

Let C∼ be an (n, 1, m) convolutional tail-biting code of L
information bits, where n is the number of output bits per
information bit, and m is the memory order. Hence, the trellis
of C∼ has Ns = 2m states at each level, and is of L + 1
levels. As aforementioned, the corresponding tail-biting paths
for codewords of C∼ should constrain on the same initial and
final state. By relaxing such constraint, we denote the super
code of C∼, which consists of all paths that may end at a final
state different from the initial state, by C∼s.

Denote by v � (v0, v1, . . . , vN−1) ∈ {0, 1}N the binary
codeword of C∼, where N = nL. Define the hard-decision
sequence y = (y0, y1, . . ., yN−1) corresponding to the received
vector r = (r0, r1, . . ., rN−1) as

yj �
{

1, if φj < 0;
0, otherwise,

where φj � ln[Pr(rj |0)/ Pr(rj |1)]. Then, it can be derived by
the Wagner rule that the ML decoding output v∗ for received
vector r satisfies

N−1∑
j=0

(v∗j ⊕ yj)|φj | ≤
N−1∑
j=0

(vj ⊕ yj)|φj | for all v ∈ C∼,

where “⊕” is the exclusive-or operation. We thereby define a
new metric for the path in a subtrellis as follows.

Definition 1: For a path with zero-one labels x
(i)
(�n−1) =

(x(i)
0 , x

(i)
1 , . . . , x

(i)
�n−1), which ends at level � in subtrellis Ti,

define the metric associated with it as

M
(
x

(i)
(�n−1)

)
�

�n−1∑
j=0

M(x(i)
j),

where M(x(i)
j) � (yj ⊕ x

(i)
j)|φj | is the bit metric.

The metrics for those paths not belonging to any subtrellis
Ti, where 1 ≤ i ≤ Ns, can be similarly defined.

In the first phase, the VA is applied using the metric just
defined. Then, we will have a set of Ns survivors ending at
the final states after phase one. Notably, these survivor paths
correspond to codewords in C∼s, but not necessarily codewords

1089-7798/08$25.00 c© 2008 IEEE

Authorized licensed use limited to: National Taipei University. Downloaded on December 25, 2008 at 22:56 from IEEE Xplore. Restrictions apply.

884 IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 12, DECEMBER 2008

in C∼. We also retain the metric of the survivor ending at state
s� of level �, obtained in phase one, and will denote it by
c(s�).

Instead of operating on the entire trellis with respect to the
super code C∼s, the decoding of the algorithm A* only operates
on tail-biting subtrellises in the second phase. Thus, the output
of the second phase will always be a codeword in C∼. For each
path with zero-one labels x

(i)
(�n−1) over subtrellis Ti, a new

evaluation function f is associated with it as follows:

f(x(i)
(�n−1)) = g(x(i)

(�n−1)) + h(x(i)
(�n−1)),

where

g(x(i)
(�n−1)) = g(x(i)

((�−1)n−1)) +
�n−1∑

j=(�−1)n

M(x(i)
j) (1)

with initial value g(x(i)
(−1)) = 0,

h(x(i)
(�n−1)) = max{0, c(sL) − c(s�)}

and s� and sL are the states that paths x
(i)
(�n−1) and x

(i)
(N−1)

respectively end at. It is easy to see that f(x(i)
N−1) = g(x(i)

N−1)
since h(x(i)

N−1) = max{0, c(sL)−c(sL)} = 0; hence, the tail-
biting path with the minimum f -function value is exactly the
one with the minimum ML metric. Moreover, since c(s�) is
the minimum metric among all paths that start from any initial
state but end specifically at state s� of level �, we have

c(s�) ≤ c(s�−1) +
�n−1∑

j=(�−1)n

M(x(i)
j),

where s�−1 and s� are respectively the states that paths
x

(i)
((�−1)n−1) and x

(i)
(�n−1) end at. Hence, f is non-decreasing

along any tail-biting path in subtrellis Ti.
Then, equipped with an Open Stack for paths visited thus

far by the Algorithm A*, and a Close Table for starting and
ending states and ending level of the paths that have ever
been on top of the Open Stack, we summarize the Improved
Algorithm A* on subtrellises in the following.

Step 1. Sort all survivors found in phase one according to
ascending order of their metrics. If the survivor with
the least metric is also a tail-biting path (that starts
and ends at the same state), then output it as the final
ML decision, and the algorithm stops.

Step 2. Set ρ equal to the least metric among all survivors
that are also tail-biting paths, if such exists; other-
wise, set ρ = ∞.

Step 3. Delete all survivors whose metrics are equal to or
greater than ρ.

Step 4. Load into the Open Stack all zero-length pathes that
start at the same states as the ending states of the
remaining survivors. Sort these zero-length paths
in the Open Stack according to ascending order of
their f -function values.

Step 5. If the Open Stack is empty, output the survivor with
metric ρ as the final ML decision, and the algorithm
stops.

Step 6. If the top path in the Open Stack reaches level L
in its subtrellis, output the path as the final ML
decision, and the algorithm stops.

Step 7. If the information of the starting and ending states
and ending level of the top path has been recorded
in the Close Table, discard the top path from the
Open Stack, and go to Step 5; otherwise, record the
paired information of the starting and ending states
and ending level of the top path in the Close Table.

Step 8. Compute the f -function values of the successors of
the top path, and delete the top path from the Open
Stack. If the f -function value of any successor is
equal to or greater than ρ, just delete it.

Step 9. Insert the remaining successor paths into the Open
Stack, and re-order the Open Stack according to
ascending f -function values. Go to Step 5.

The optimality of the above algorithm can be substantiated
by the fact that Step 7 will never delete the true ML decision.

Suppose that at Step 7, the paired information of the starting
and ending states and ending level of the new top path x

(i)
(�n−1)

has been recorded in the Close Table at some previous time
due to path x̂

(i)
(�n−1). Since path x

(i)
(�n−1) must be the offspring

of a path x
(i)

(�̄n−1)
that once coexisted with x̂

(i)
(�n−1) in the Open

Stack at the time x̂
(i)
(�n−1) was on top of the Open Stack, where

�̄ < �, we have

f
(
x

(i)
(�n−1)

)
≥ f

(
x

(i)

(�̄n−1)

)
≥ f

(
x̂

(i)
(�n−1)

)
.

Notably, the first inequality follows from the non-
decreasingness of the f -function values along any path in
subtrellis Ti, and the second inequality is valid because the
top path in the Open Stack always carries the minimum f -
function value. As a result, the minimum-metric tail-biting
path generated from path x

(i)
(�n−1) will always have an equal

or larger metric than the minimum-metric tail-biting path
generated from path x̂

(i)
(�n−1). The deletion of path x

(i)
(�n−1)

accordingly will not eliminate the ML tail-biting path.
Similar argument can be used to prove that the first top path

that reaches level L shall have the minimum metric among all
tail-biting paths generated from the remaining paths coexisted
with this top path. The optimality of the algorithm is therefore
confirmed.

III. SIMULATION RESULTS OVER AWGN CHANNEL

In this section, we investigate the computational effort and
the word error rate (WER) of the proposed decoding algo-
rithm by simulations over the additive white Gaussian noise
(AWGN) channel with BPSK-modulated inputs. The (2, 1, 6)
binary convolutional tail-biting code with generator 155, 177
(octal) is considered. The length of the information bits used
in our simulations is 48. We will respectively abbreviate the
proposed algorithm and the algorithm given in [1] as IA*
and A* in the sequel. For all simulations, at least 30 word
errors have been reported to ensure that there is no bias on
the simulation results.

In Figure 1, we compare the WERs of the IA* with those
obtained by the A*, as well as the WAVA given in [2]
with two iterations. Since both the IA* and the A* are ML

Authorized licensed use limited to: National Taipei University. Downloaded on December 25, 2008 at 22:56 from IEEE Xplore. Restrictions apply.

PAI et al.: LOW-COMPLEXITY ML DECODING FOR CONVOLUTIONAL TAIL-BITING CODES 885

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

WAVA
IA*(A*)

Fig. 1. The word error rates (WERs) of IA*, A*, and WAVA.

TABLE I
COMPARISON OF AVERAGE (AVE) AND MAXIMUM (MAX) NUMBERS OF

BRANCH METRIC COMPUTATIONS IN PHASE TWO

Eb/N0 3 dB 4 dB 5 dB

algorithm ave max ave max ave max
WAVA 3072 3072 3072 3072 3072 3072

A* 335 29313 221 11930 165 11010
IA* 94 11045 42 3427 27 780

decoders, it is reasonable that they yield the same WER. Also
noted from Figure 1 is that the WAVA provides near-optimal
WER performance, and is only slightly inferior to the optimal
performance when Eb/N0 is between 1 dB and 4.5 dB.2

2Eb/N0 denotes the signal-to-noise ratio per information bit.

In Table I, we compare the average and maximum compu-
tational efforts of the IA* with those of the A* and the WAVA
in phase two. For a fair comparison, only the computations of
branch metrics, i.e., the second term in (1), are considered.3

Since the WAVA searches the entire trellis in phase two, its
number of branch metrics computed is the same for all SNRs.
By the simulation results, the IA* has a much smaller average
and maximum computational complexity than the A* for all
SNRs. For example, the average computational effort of the
IA* is about 7 times and 70 times less than that of the A*
and the WAVA, respectively, when Eb/N0 ≥ 4 dB as shown
in Table I.

REFERENCES

[1] P. Shankar, P. N. A. Kumar, K. Sasidharan, B. S. Rajan, and A. S.
Madhu, “Efficient convergent maximum likelihood decoding on tail-
biting,” available at http://arxiv.org/abs/cs.IT/0601023.

[2] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two decoding algorithm
for tailbiting codes,” IEEE Trans. Commun., vol. COM-51, no. 10, pp.
1658–1665, Oct. 2003.

[3] Q. Wang and V. K. Bhargava, “An efficient maximum likelihood decoding
algorithm for generalized tail biting,” IEEE Trans. Commun., vol. COM-
37, no. 8, pp. 875–879, 1989.

[4] R. V. Cox and C. E. W. Sundberg, “An efficient adaptive circular viterbi
algorithm for decoding generalized tailbiting convolutional codes,” IEEE
Trans. Veh. Technol., vol. 43, no. 11, pp. 57–68, Feb. 1994.

3The proposed recursive implementation of the Algorithm A* in [1] has
a merit that no branch metric computation is required when the successor
path has the same f -function value as its predecessor. By this reason, the
complexities of the IA* in Table I also excludes the computations of those
branch metrics that equate the f -function values of the successor and its
immediate predecessor.

Authorized licensed use limited to: National Taipei University. Downloaded on December 25, 2008 at 22:56 from IEEE Xplore. Restrictions apply.

